Skip to main content

Stock market trend prediction using AHP and weighted kernel LS-SVM

Abstract

Nowadays, stock market trend prediction represents a challenging subject both in terms of the choice of the prediction model and in terms of constructing the set of features that model will use for prediction. To address both of these aspects, we propose a feature ranking and feature selection approach in combination with weighted kernel least squares support vector machines (LS-SVMs). We introduce the analytic hierarchy process (AHP) into the stock market and propose evaluation criteria which provide the prediction model with relevant knowledge of the underlying processes of the studied stock market. The feature weights obtained by the AHP method are used for feature ranking and selection, and used with the LS-SVMs through a weighted kernel. The test results indicate that the proposed model outperforms the benchmark models. In addition, the set of feature weights obtained by the proposed approach can also independently be incorporated into other kernel-based learners.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79

    MathSciNet  Article  MATH  Google Scholar 

  • Atsalakis SG, Valavanis PK (2009) Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert Syst Appl 36(7):10696–10700. doi:10.1016/j.eswa.2009.02.043

    Article  Google Scholar 

  • Atsalakis SG, Valavanis PK (2009b) Surveying stock market forecasting techniques—Part II: Soft computing methods. Expert Syst Appl 36(3):5932–5941. doi:10.1016/j.eswa.2008.07.006

    Article  Google Scholar 

  • Barak S, Modarres M (2015) Developing an approach to evaluate stocks by forecasting effective features with data mining methods. Expert Syst Appl 42(3):1325–1339. doi:10.1016/j.eswa.2014.09.026

    Article  Google Scholar 

  • De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans K, De Moor B, Vandewalle J, Suykens JAK (2011) LS-SVMlab toolbox user’s guide version 1.8. http://www.esat.kuleuven.be/sista/lssvmlab/

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

  • Coyle G (2004) Practical strategy: structured tools and techniques. Pearson, New York

  • Crone SF, Kourentzes N (2010) Feature selection for time series prediction—a combined filter and wrapper approach for neural networks. Neurocomputing 73(10–12):1923–1936. doi:10.1016/j.neucom.2010.01.017

    Article  Google Scholar 

  • Chai J, Du J, Lai KK, Lee YP (2015) A hybrid least square support vector machine model with parameters optimization for stock forecasting. Math Probl Eng (article ID 231394, 7 pages). doi:10.1155/2015/231394

  • Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27

  • Dai W, Wu J-Y, Lu C-J (2012) Combining nonlinear independent component analysis and neural network for the prediction of Asian stock market indexes. Expert Syst Appl 39(4):4444–4452. doi:10.1016/j.eswa.2011.09.145

    Article  Google Scholar 

  • Dešmar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  Google Scholar 

  • Fama E (1970) Efficient capital markets: a review of theory and empirical work. J Finance 25:383–417

    Article  Google Scholar 

  • Fung GPC, Yu JX, Lam W (2002) News sensitive stock trend prediction. In: Advances in knowledge discovery and data mining. Springer, Berlin, pp 481–493. doi:10.1007/3-540-47887-6_48

  • Genuer R, Poggi J-M, Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recognit Lett 31(14):2225–2236

    Article  Google Scholar 

  • Giveki D, Salimi H, Bahmanyar G, Khademian Y (2012) Automatic detection of diabetes diagnosis using feature weighted support vector machines based on mutual information and modified Cuckoo search. arXiv:1201.2173

  • Gómez-Verdejo V, Verleysen M, Fleury J (2009) Information-theoretic feature selection for functional data classification. Neurocomputing 72(16–18):3580–3589. doi:10.1016/j.neucom.2008.12.035

    Article  Google Scholar 

  • Guo B, Gunn SR, Damper RI (2008) Customizing kernel functions for SVM-based hyperspectral image classification. IEEE Trans Image Process 17(4):622–629. doi:10.1109/TIP.2008.918955

    MathSciNet  Article  Google Scholar 

  • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  • Hawawini G, Keim DB (1995) On the predictability of common stock returns: world-wide evidence. In: Handbooks in operations research and management science, vol \(9\). North-Holland, Amsterdam, pp 497–544

  • He Y, Fataliyev K, Wang L (2013) ICONIP 2013, Part II, LNCS 8227. In: Lee M et al (eds) Feature selection for stock market analysis. Springer, Berlin, pp 737–744

  • Huang W, Nakamori Y, Wang S-Y (2005) Forecasting stock market movement direction with support vector machine. Comput Oper Res 32(10):2513–2522. doi:10.1016/j.cor.2004.03.016

    Article  MATH  Google Scholar 

  • Kara Y, Boyacioglu MA, Baykan ÖK (2011) Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Syst Appl 38(5):5311–5319. doi:10.1016/j.eswa.2010.10.027

    Article  Google Scholar 

  • Kaufman PJ (2003) A short course in technical trading. Wiley, New York

  • Kraskov A, Stogbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6):066138

    MathSciNet  Article  Google Scholar 

  • Lahmiri S (2011) A comparison of PNN and SVM for stock market trend prediction using economic and technical information. Int J Comput Appl 29:24–30

    Google Scholar 

  • Lee M-C (2009) Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Syst Appl 36(8):10896–10904. doi:10.1016/j.eswa.2009.02.038

    Article  Google Scholar 

  • Levy H (2006) Stochastic dominance investment decision making under uncertainty, 2nd edn. Springer, New York

  • Liu D-R, Shih Y-Y (2005) Integrating AHP and data mining for product recommendation based on customer lifetime value. Inf Manag 42(3):387–400. doi:10.1016/j.im.2004.01.008

    Article  Google Scholar 

  • Liu D, Tian Z, Luo B, Xia J (2013) Feature ranking in intrusion detection by hybrid algorithm with support vector machine and analytic hierarchy process. Int J Digit Content Technol Appl (JDCTA) 7(7):1005–1013. doi:10.4156/jdcta.vol7.issue7.119

    Article  Google Scholar 

  • Lo AW (2007) The new palgrave: a dictionary of economics. In: Blume L, Durlauf S (eds) Efficient markets hypothesis. Palgrave Macmillan, Basingstoke

  • Marković I, Stojanović M, Božić M, Stanković J (2015) ICT innovations. In: 2014 proceedings of the advances in intelligent systems and computing. In: Bogdanova AM, Gjorgjevik D (eds) Stock market trend prediction based on the LS-SVM model update algorithm. Springer, New York, pp 105—114

  • Mittermayer MA (2004) Forecasting intraday stock price trends with text mining techniques. Proc Hawai Int Conf Syst Sci. doi:10.1109/HICSS.2004.1265201

  • McNelis PD (2005) Neural networks in finance: gaining predictive edge in the market. Elsevier, New York

  • Ni L-P, Ni ZW, Gao YZ (2011) Stock trend prediction based on fractal feature selection and support vector machine. Expert Syst Appl 38(5):5569–5576. doi:10.1016/j.eswa.2010.10.079

    Article  Google Scholar 

  • Omak EC, Polat K, Gunes S, Arslan A (2007) A new medical decision making system: least square support vector machine (LSSVM) with fuzzy weighting pre-processing. Expert Syst Appl 32(2):409–414. doi:10.1016/j.eswa.2005.12.001

    Article  Google Scholar 

  • Pauwels S, Inghelbrecht K, Heyman P, Marius D (2011) Technical trading rules in emerging stock markets. World Acad Sci Eng Technol 5:11–20

    Google Scholar 

  • Rabin M (2000) Risk aversion and expected-utility theory: a calibration theorem. Econometrica 68:1281–1292

    Article  Google Scholar 

  • Saaty TL (1999) Monográfico: Problemas complejos de decisión. II. Basic theory of the analytic hierarchy process: how to make a decision. Rev R Acad Cienc Exact Fis Nat (Esp) 93:395–423

  • Stojanović BM, Božić MM, Stanković MM, Stajić ZP (2014) A methodology for training set instance selection using mutual information in time series prediction. Neurocomputing 141(2):236–245. doi:10.1016/j.neucom.2014.03.006

    Article  Google Scholar 

  • Suykens JAK, Van Gestel T, Brabanter J De, Moor B De, Vandewalle J (2002) Least squares support vector machines. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Wang Y, Choi I-C (2013) Market index and stock price direction prediction using machine learning techniques: an empirical study on the KOSPI and HIS. arXiv:1309.7119

  • Wang D, Zhang H (2013) Group AHP and \(K\)-means cluster for a new segmentation of brand customer. Int J Adv Comput Technol (IJACT) 5:213–221

    Google Scholar 

  • Xing H, Ha M, Hu B, Tian D (2009) Linear feature-weighted support vector machine. Fuzzy Inf Eng 1(3):289–305. doi:10.1007/s12543-009-0022-0

  • Yao J, Zhao S, Fan L (2006) Enhanced support vector machine model for intrusion detection. Rough Sets Knowl Technol LNCS 4062:538–543. doi:10.1007/11795131_78

  • Yoo P D, Kim MH, Jan T (2005) Machine learning techniques and use of event information for stock market prediction: a survey and evaluation. In: Computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce, pp 835–841. doi:10.1109/CIMCA.2005.1631572

  • Yu L, Wang S, Lai KK (2005) WINE 2005, LNCS 3828 In: Deng X, Ye Y (eds) Mining stock market tendency using GA-based support vector machines. Springer, Berlin, pp 336–345

  • Yu L, Chen H, Wang S, Lai KK (2009) Evolving least squares support vector machines for stock market trend mining. IEEE Trans Evolut Comput 13(1):87–102. doi:10.1109/TEVC.2008.928176

  • Yuling L, Guo H, Hu J (2013) An SVM-based approach for stock market trend prediction. Neural Netw (IJCNN) (IEEE Press, New York) 1– 7. doi:10.1109/IJCNN.2013.6706743

  • Zhai Y, Hsu A, Halgamuge SK (2007) ISNN 2007, Part III, LNCS 4493. In: Liu D et al (eds) Combining news and technical indicators in daily stock price trends prediction. Springer, Berlin, pp 1087–1096. doi:10.1007/3-540-47887-6_48

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Marković.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marković, I., Stojanović, M., Stanković, J. et al. Stock market trend prediction using AHP and weighted kernel LS-SVM. Soft Comput 21, 5387–5398 (2017). https://doi.org/10.1007/s00500-016-2123-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2123-0

Keywords

  • Analytic hierarchy process
  • Stock market trend prediction
  • Least squares support vector machines
  • Weighted kernel