Soft Computing

, Volume 21, Issue 18, pp 5369–5386 | Cite as

A genetic-based effective approach to path-planning of autonomous underwater glider with upstream-current avoidance in variable oceans

  • Chien-Chou Shih
  • Mong-Fong Horng
  • Tien-Szu Pan
  • Jeng-Shyang Pan
  • Chun-Yu Chen
Methodologies and Application

Abstract

In this work, an exponential effective function (EEF) is developed as fitness function applied in a hybrid-Genetic Algorithm (hybrid-GA) to propose a genetic-based effective approach to the glider path-planning of ocean-sampling mission in variable oceans. The proposed EEF is such an objective function that is able to be implemented in optimization algorithm such as Genetic Algorithm (GA) for evaluation of the fittest path. In consideration of the glider path-planning problem (GPP), two motivations are driven by the proposed approach to the glider path-planning in discovery of: (1) a reachable path with the upstream-current avoidance (UCA) in variable oceans; (2) an efficient path for the glider ocean-sampling mission. The exponential combination of the glider motion and current effects as well as the cruising distance benefits the path in terms of reachability and efficiency. The reachability is the first motivation to discover a reachable path implemented by the scheme of UCA, while the efficiency is the second motivation to shorten the cruising distance. Meanwhile, the stabilized path solution is accomplished by hybrid-GA. In variable oceans, currents severely impact the path solution and lead the global optimum to absence. Therefore, alternative is to discover an optimal path with the minimum upstream-current sub-paths to approximate the minimal cruising distance in the condition that the discovered cruising distance should be less than the glider cruising range. To deeply analyze the path reachability, two theorems are developed to verify the conditions of the downstream-current angle (DCA). To evaluate the path-planning performances, 6 state-of-the-art fitness functions are studied and used to make a fair comparison with the EEF in hybrid-GA. First of all, 112 scenarios are created in the restricted random current variations (RRCV). Secondly, 21 scenarios are created in the near-real Kuroshio Current of east Taiwan (KCET) introducing from an ocean prediction model. These scenarios are designed to evaluate fairly the EEF in hybrid-GA. Numeric results show that whether the RRCV or the KCET, the proposed EEF indeed is able to discover the optimal path with the benefits of reachability and efficiency. Therefore, the proposed genetic-based effective approach is well developed to solve the GPP in variable oceans.

Keywords

Optimization Genetic Algorithm Autonomous underwater glider Path-planning Exponential effective function Upstream-current avoidance 

Notes

Acknowledgments

This research has been financially supported in part by the MOST ROC (Taiwan) under Grants “MOST104-2221-E-151-007”. The financial support is gratefully appreciated. The authors would also like to thank Dr. Yih Yang and Dr. Jian-Ming Liau at Taiwan Ocean Research Institute, National Applied Research Laboratories for providing the relative support of the Kuroshio Current simulation.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. Aghababa MP (2012) 3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles. Appl Ocean Res. doi:10.1016/j.apor.2012.06.002
  2. Ahmed ZH (2010) Genetic algorithm for the traveling salesman problem using sequential constructive crossover operator. Int J Biom Bioinform 3(6):96–105Google Scholar
  3. Ahmed F, Deb K (2013) Multi-objective optimal path planning using elitist non-dominated sorting genetic algorithms. Soft Comput. doi:10.1007/s00500-012-0964-8 Google Scholar
  4. Albayrak M, Allahverdi N (2011) Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic Algorithms. Expert Syst Appl. doi:10.1016/j.eswa.2010.07.006
  5. Alcázar V, Veloso M, Borrajo D (2011) Adapting a rapidly-exploring random tree for automated planning. In: Proceedings of the fourth international symposium on combinatorial Ssearch (SoCS-2011), pp 1–9Google Scholar
  6. Alvarez A, Caiti A, Onken R (2004) Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J Oceanic Eng. doi:10.1109/JOE.2004.827837
  7. Barkley RA (1970) The Kuroshio current. Sci J 6:54–60Google Scholar
  8. Bhadoria A, Singh RK (2014) Optimized angular a star algorithm for global path search based on neighbor node evaluation. Int J Intell Syst Appl (IJISA). doi:10.5815/ijisa
  9. Castillo O, Trujillo L, Melin P (2007) Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots. Soft Comput. doi:10.1007/s00500-006-0068-4
  10. Clifton M, Paul G, Kwok N, Dikai L, Wang DL (2008) Evaluating performance of multiple RRTs. In: Mechtronic and embedded systems and spplication, pp 564–569. doi:10.1109/MESA.2008.4735749
  11. Donald B, Xavier P, Canny J, Reif J (1993) Kinodynamic motion planning. J ACM. doi:10.1145/174147.174150
  12. Fernandez-Perdomo E et al (2010) Path planning for gliders using regional ocean models: application of Pinzón path planner with the ESEOAT model and the RU27 trans-Atlantic flight data. In: Proceedings of IEEE OCEANS, pp 1–10. doi:10.1109/OCEANSSYD.2010.5603684
  13. Fernandez-Perdomo E, Cabrera-Gamez J, Hernandez-Sosa D, Isern-Gonzalez J, Dominguez-Brito AC, Prieto-Maranon V, Ramos AG (2011) Adaptive bearing sampling for a constant-time surfacing A* path planning algorithm for gliders. In: Proceedings of IEEE international conference on robotics and automation (ICRA). doi:10.1109/ICRA.2011.5980137
  14. Groba C, Sartal A, Vázquez XH (2015) Solving the dynamic traveling salesman problem using a genetic algorithm with trajectory prediction: An application to fish aggregating devices. Comput Oper. doi:10.1016/j.cor.2014.10.012 MATHGoogle Scholar
  15. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4:100–107. doi:10.1109/TSSC.1968.300136 CrossRefGoogle Scholar
  16. Holland JH (1984) Genetic algorithms and adaptation. In: Adaptive control of Ill-defined systems. Springer US, Boston, pp 317–333. doi:10.1007/978-1-4684-8941-5_21
  17. Hong TP, Huang KY, Lin WY (2002) Applying genetic algorithms to game search trees. Soft Comput. doi:10.1007/s005000100154 MATHGoogle Scholar
  18. Larrañaga P, Kuijpers CMH, Murga RH, Inza I, Dizdarevic S (1999) Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif Intell. doi:10.1023/a:1006529012972
  19. LaValle SM, Kuffner JJ Jr (2000) Rapidly-exploring random trees: progress and prospects. In: Algorithmic and computational robotics: new directions: the fourth workshop on the algorithmic foundations of robotics, pp 293–308Google Scholar
  20. LaValle SM (2006) Motion planning. In: Planning algorithms, 1st edn. Cambridge University Press, Cambridge, pp 79–80Google Scholar
  21. Leonard NE, Paley DA, Lekien F, Sepulchre R, Fratantoni DM, Davis RE (2007) Collective motion, sensor networks, and ocean sampling. Proc IEEE 95:48–74. doi:10.1109/JPROC.2006.887295 CrossRefGoogle Scholar
  22. Lovie P (2005) Coefficient of variation. In: Encyclopedia of statistics in behavioral science. John Wiley & Sons, Ltd. doi:10.1002/0470013192.bsa107
  23. Majumdar J, Bhunia AK (2011) Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times. J Comput Appl Math. doi:10.1016/j.cam.2010.12.027
  24. Mensah V, Jan S, Chiou M-D, Kuo TH, Lien R-C (2014) Evolution of the Kuroshio Tropical Water from the Luzon Strait to the east of Taiwan. Deep-Sea Res. doi:10.1016/j.dsr.2014.01.005
  25. Moura A, Rijo R, Silva P, Crespo S (2010) A multi-objective genetic algorithm applied to autonomous underwater vehicles for sewage outfall plume dispersion observations. Appl Soft Comput. doi:10.1016/j.asoc.2010.05.009
  26. Nagata Y, Soler D (2012) A new genetic algorithm for the asymmetric traveling salesman problem. Expert Syst Appl. doi:10.1016/j.eswa.2012.02.029 Google Scholar
  27. NIMA (2002) Calculations and conversions. In: The American practical navigator: bowditch, 2nd edn. Paradise Cay Publications, National Imagery and Mapping Agency, pp 331–332Google Scholar
  28. Pêtrès C, Pailhas Y, Patron P, Petillot Y, Evans J, Lane D (2007) Path planning for autonomous underwater vehicles. IEEE T Robot. doi:10.1109/tro.2007.895057
  29. Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ (2004) Underwater gliders for ocean research. Mar Technol Soc J 38(2):73–84CrossRefGoogle Scholar
  30. Schrijver A (2005) On the history of combinatorial optimization. In: Handbooks in operations research and management science, vol 12. Elsevier, Amsterdam, pp 1–68. doi:10.1016/S0927-0507(05)12001-5
  31. Sherman J, Davis R, Owens WB, Valdes J (2001) The autonomous underwater glider “Spray”. IEEE J Oceanic Eng 26(4):437–446. doi:10.1109/48.972076 CrossRefGoogle Scholar
  32. Shih C-C, Horng M-F, Pan J-S (2012) 3-D adaptive bearing sampling for AUG route planning in extensible ocean model. In: Proceedings of 14th conference on undersea technology (CUST 2012), Kaohsiung, Taiwan (R.O.C), pp 71–84Google Scholar
  33. Shih C-C, Yang Y, Horng M-F, Pan T-S, Pan J-S (2014) An effective approach to genetic path planning for autonomous underwater glider in a variable ocean. In: Proceedings of international forum on systems and mechatronics (IFSM2014), Tainan, Taiwan (R.O.C), pp 1–6Google Scholar
  34. Skiena SS (2008) Graph problems: polynomial-time. In: The algorithm design manual, 2nd edn. Springer-Verlag, London, pp 495–496. doi:10.1007/978-1-84800-070-4
  35. Soulignac M (2011) Feasible and optimal path planning in strong current fields. IEEE T Robot. doi:10.1109/tro.2010.2085790
  36. Spong MW, Vidyasagar M (2008) Velocity kinematics-the manipulator Jacoobian. In: Robot dynamics and control. Wiley India Pvt. Limited, pp 99–100Google Scholar
  37. Wang Y (2014) The hybrid genetic algorithm with two local optimization strategies for traveling salesman problem. Comput Ind Eng. doi:10.1016/j.cie.2014.01.015 Google Scholar
  38. Webb DC, Simonetti PJ, Jones CP (2001) SLOCUM: an underwater glider propelled by environmental energy. IEEE J Oceanic Eng 26(4):447–452. doi:10.1109/48.972077 CrossRefGoogle Scholar
  39. Weisstein EW (2002) CRC concise encyclopedia of mathematics, 2nd edn. Chapman and Hall/CRC, pp 1990–1991Google Scholar
  40. Young JH, Wan KC (2013) RRT-based path planning with kinematic constraints of AUV in underwater structured environment. In: Proceedings of 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2013). doi:10.1109/urai.2013.6677328
  41. Yu X, Gen M (2010) Simple evolutionary algorithms. In: Introduction to evolutionary algorithms, 1st edn. Springer-Verlag, London, pp 15–24. doi:10.1007/978-1-84996-129-5
  42. Zhang Z, Zhao Z (2014) A multiple mobile robots path planning algorithm based on A-star and Dijkstra algorithm. Int J Smart Home 8(3):75–86MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chien-Chou Shih
    • 1
    • 2
  • Mong-Fong Horng
    • 1
  • Tien-Szu Pan
    • 1
  • Jeng-Shyang Pan
    • 3
  • Chun-Yu Chen
    • 1
  1. 1.Department of Electronic EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan
  2. 2.Taiwan Ocean Research InstituteNational Applied Research LaboratoriesKaohsiungTaiwan
  3. 3.School of Information Science and EngineeringFujian University of TechnologyFujian ProvinceChina

Personalised recommendations