Soft Computing

, Volume 21, Issue 17, pp 5091–5102 | Cite as

Firefly algorithm with adaptive control parameters

  • Hui Wang
  • Xinyu Zhou
  • Hui Sun
  • Xiang Yu
  • Jia Zhao
  • Hai Zhang
  • Laizhong CuiEmail author
Methodologies and Application


Firefly algorithm (FA) is a new swarm intelligence optimization method, which has shown good search abilities on many optimization problems. However, the performance of FA highly depends on its control parameters. In this paper, we investigate the control parameters of FA, and propose a modified FA called FA with adaptive control parameters (ApFA). To verify the performance of ApFA, experiments are conducted on a set of well-known benchmark problems. Results show that the ApFA outperforms the standard FA and five other recently proposed FA variants.


Firefly algorithm (FA) Swarm intelligence Adaptive control parameters Self-adaptive FA Global optimization 



This work is supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Humanity and Social Science Foundation of Ministry of Education of China (No. 13YJCZH174), the National Natural Science Foundation of China (Nos. 61305150, 61261039, 61402294, and 61572328), Major Fundamental Research Project in the Science and Technology Plan of Shenzhen under Grants (Nos. JCYJ20140 828163633977, JCYJ20140418181958501, and JCYJ201 50630105452814), Open Research Fund of China-UK Visual Information Processing Lab, National Social Science Foundation of China (No. 15CGL040), the Foundation of State Key Laboratory of Software Engineering (No. SKLSE2014-10-04), and the Natural Science Foundation of Jiangxi Province (Nos. 20142BAB217020 and 20151BAB217007).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent



  1. Amiri B, Hossain L, Crawford JW, Wigand RT (2013) Community detection in complex networks: multi-objective enhanced firefly algorithm. Knowl-Based Syst 46:1–11CrossRefGoogle Scholar
  2. Baykasoğlu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl Soft Computi 36:152–164CrossRefGoogle Scholar
  3. Castiglione A, De Prisco R, De Santis A, Fiore U, Palmieri F (2014) A botnet-based command and control approach relying on swarm intelligence. J Netw Comput Appl 38:22–33CrossRefGoogle Scholar
  4. Chen J, Lin Q, Hu Q (2010) Application of novel clonal algorithm in multiobjective optimization. Int J Inf Technol Decis Mak 9(2):239–266zbMATHCrossRefGoogle Scholar
  5. Chen J, Lin Q, Ji Z (2011) Chaos-based multi-objective immune algorithm with a fine-grained selection mechanism. Soft Comput 15(7):1273–1288CrossRefGoogle Scholar
  6. Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144MathSciNetzbMATHCrossRefGoogle Scholar
  7. Cheung NJ, Ding X-M, Shen H-B (2014) Adaptive firefly algorithm: parameter analysis and its application. PLoS One 9(11):e112634. doi: 10.1371/journal.pone.0112634 CrossRefGoogle Scholar
  8. Chhikara RR, Singh L (2015) An improved discrete firefly and t-test based algorithm for blind image steganalysis. In: The 6th international conference on intelligent systems, modelling and simulation (ISMS). IEEE, pp 58–63Google Scholar
  9. dos Santos Coelho L, Mariani VC (2013) Improved firefly algorithm approach applied to chiller loading for energy conservation. Energy Build 59:273–278CrossRefGoogle Scholar
  10. Duan H, Luo Q (2015) New progresses in swarm intelligence-based computation. Int J Bio-Inspired Comput 7(1):26–35CrossRefGoogle Scholar
  11. Farahani SM, Abshouri AA, Nasiri B, Meybodi MR (2011) A gaussian firefly algorithm. Int J Mach Learn Comput 1(5):448–453CrossRefGoogle Scholar
  12. Fister Jr I, Yang X-S, Fister I, Brest J (2012) Memetic firefly algorithm for combinatorial optimization. arXiv preprint arXiv:1204.5165
  13. Fister I, Yang X-S, Brest J (2013a) A comprehensive review of firefly algorithms. Swarm Evolut Comput 13:34–46CrossRefGoogle Scholar
  14. Fister I, Yang X-S, Brest J (2013b) Modified firefly algorithm using quaternion representation. Expert Syst Appl 40(18):7220–7230CrossRefGoogle Scholar
  15. Fister I, Perc M, Kamal SM (2015a) A review of chaos-based firefly algorithms. Appl Math Comput 252:155–165Google Scholar
  16. Fister I Jr, Yang X-S, Brest J, Fister D, Fister I (2015b) Analysis of randomisation methods in swarm intelligence. Int J Bio-Inspired Comput 7(1):36–49Google Scholar
  17. Florence AP, Shanthi V (2014) A load balancing model using firefly algorithm in cloud computing. J Comput Sci 10(7):1156–1165CrossRefGoogle Scholar
  18. Fu Z, Sun X, Liu Q, Zhou L, Shu J (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98–B(1):190–200CrossRefGoogle Scholar
  19. Gandomi AH, Yang X-S, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18(1):89–98MathSciNetzbMATHCrossRefGoogle Scholar
  20. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Inf Sci 180(10):2044–2064CrossRefGoogle Scholar
  21. Gopinadh V, Singh A (2015) Swarm intelligence approaches for cover scheduling problem in wireless sensor networks. Int J Bio-Inspired Comput 7(1):50–61CrossRefGoogle Scholar
  22. Gu B, Sheng VS, Tay KY, Romano W, Li S (2015a) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416Google Scholar
  23. Gu B, Sheng VS, Wang Z, Ho D, Osman S, and Li S (2015b) Incremental learning for \(\nu \)-support vector regression. Neural Netw 67:140–150Google Scholar
  24. Hassanzadeh T, Vojodi H, Moghadam AME (2011) An image segmentation approach based on maximum variance intra-cluster method and firefly algorithm. In: The seventh international conference on natural computation (ICNC). IEEE, pp 1817–1821Google Scholar
  25. Kazem A, Sharifi E, Hussain FK, Saberi M, Hussain OK (2013) Support vector regression with chaos-based firefly algorithm for stock market price forecasting. Appl Soft Comput 13(2):947–958CrossRefGoogle Scholar
  26. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Int Conf Neural Netw 4:1942–1948Google Scholar
  27. Kougianos E, Mohanty SP (2015) A nature-inspired firefly algorithm based approach for nanoscale leakage optimal rtl structure. Integr VLSI J 51:46–60CrossRefGoogle Scholar
  28. Li J, Kim K (2010) Hidden attribute-based signatures without anonymity revocation. Inf Sci 180(9):1681–1689MathSciNetzbMATHCrossRefGoogle Scholar
  29. Li J, Chen X, Li M, Li J, Lee PPC, Lou W (2014) Secure deduplication with efficient and reliable convergent key management. Parallel Distrib Syst IEEE Trans 25(6):1615–1625CrossRefGoogle Scholar
  30. Li J, Li X, Yang B, Sun X (2015a) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518CrossRefGoogle Scholar
  31. Li J, Li J, Chen X, Jia C, Lou W (2015b) Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans Comput 64(2):425–437MathSciNetzbMATHCrossRefGoogle Scholar
  32. Liang Z, Sun J, Lin Q, Zhihua D, Chen J, Ming Z (2016) A novel multiple rule sets data classification algorithm based on ant colony algorithm. Appl Soft Comput 38:1000–1011CrossRefGoogle Scholar
  33. Lin Q, Chen J (2013) A novel micro-population immune multiobjective optimization algorithm. Comput Oper Res 40(6):1590–1601MathSciNetzbMATHCrossRefGoogle Scholar
  34. Lin Q, Zhu Q, Huang P, Chen J, Ming Z, Yu J (2015) A novel hybrid multi-objective immune algorithm with adaptive differential evolution. Comput Oper Res 62:95–111MathSciNetzbMATHCrossRefGoogle Scholar
  35. Long NC, Meesad P, Unger H (2015) A highly accurate firefly based algorithm for heart disease prediction. Expert Syst Appl 42(21):8221–8231CrossRefGoogle Scholar
  36. Ma T, Zhou J, Tang M, Tian Y, Al-dhelaan A, Al-rodhann M, Lee S (2015) Social network and tag sources based augmenting collaborative recommender system. IEICE Trans Inf Syst E98–D(4):902–910CrossRefGoogle Scholar
  37. Marichelvam MK, Prabaharan T, Yang XS (2014) A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Trans Evolut Comput 18(2):301–305CrossRefGoogle Scholar
  38. Palit S, Sinha SN, Molla MA, Khanra A, Kule M (2011) A cryptanalytic attack on the knapsack cryptosystem using binary firefly algorithm. In: 2011 2nd international conference on computer and communication technology (ICCCT). IEEE, pp 428–432Google Scholar
  39. Poursalehi N, Zolfaghari A, Minuchehr A (2013) Multi-objective loading pattern enhancement of pwr based on the discrete firefly algorithm. Ann Nucl Energy 57:151–163CrossRefGoogle Scholar
  40. Rahmani A, MirHassani SA (2014) A hybrid firefly-genetic algorithm for the capacitated facility location problem. Inf Sci 283:70–78MathSciNetzbMATHCrossRefGoogle Scholar
  41. Ren Y, Shen J, Wang J, Han J, Lee S (2015) Mutual verifiable provable data auditing in public cloud storage. J Internet Technol 16(2):317–323Google Scholar
  42. Roy AG, Rakshit P, Konar A, Bhattacharya S, Kim E, Nagar AK (2013) Adaptive firefly algorithm for nonholonomic motion planning of car-like system. In: IEEE congress on evolutionary computation (CEC 2013). IEEE, pp 2162–2169Google Scholar
  43. Saraç E, Özel SA (2013) Web page classification using firefly optimization. In: IEEE international symposium on innovations in intelligent systems and applications (INISTA). IEEE, pp 1–5Google Scholar
  44. Sayadi MK, Hafezalkotob A, Naini SGJ (2013) Firefly-inspired algorithm for discrete optimization problems: an application to manufacturing cell formation. J Manuf Syst 32(1):78–84CrossRefGoogle Scholar
  45. Senthilnath J, Omkar SN, Mani V (2011) Clustering using firefly algorithm: performance study. Swarm Evolut Comput 1(3):164–171CrossRefGoogle Scholar
  46. Shen J, Tan H, Wang J, Wang J, Lee S (2015) A novel routing protocol providing good transmission reliability in underwater sensor networks. J Internet Technol 16(1):171–178Google Scholar
  47. Shomalnasab F, Sadeghzadeh M, Esmaeilpour M (2014) An optimal similarity measure for collaborative filtering using firefly algorithm. J Adv Comput Res 5(3):101–111Google Scholar
  48. Srivatsava PS, Mallikarjun B, Yang X-S (2013) Optimal test sequence generation using firefly algorithm. Swarm Evolut Comput 8:44–53CrossRefGoogle Scholar
  49. Verma OP, Aggarwal D, Patodi T (2016) Opposition and dimensional based modified firefly algorithm. Expert Syst Appl 44:168–176CrossRefGoogle Scholar
  50. Wang H, Rahnamayan S, Sun H, Omran MGH (2013) Gaussian bare-bones differential evolution. IEEE Trans Cybern 43(2):634–647CrossRefGoogle Scholar
  51. Wang B, Li D-X, Jiang J-P, Liao Y-H (2014) A modified firefly algorithm based on light intensity difference. J Combin Optim 1–16. doi: 10.1007/s10878-014-9809-y
  52. Wang H, Wang WJ, Sun H, Rahnamayan S (2016) Firefly algorithm with random attraction. Int J Bio-Inspired Comput 8(1):33–41CrossRefGoogle Scholar
  53. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406CrossRefGoogle Scholar
  54. Xia Z, Wang X, Sun X, Liu Q, Xiong N (2014a) Steganalysis of LSB matching using differences between nonadjacent pixels. Multimedia Tools and Applications. doi: 10.1007/s11042-014-2381-8
  55. Xia Z, Wang X, Sun X, Wang B (2014b) Steganalysis of least significant bit matching using multi-order differences. Secur Commun Netw 7(8):1283–1291Google Scholar
  56. Xia Z, Wang X, Sun X, Wang Q (2015) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distributed Syst. doi: 10.1109/TPDS.2015.2401003
  57. Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel Pers Commun 78(1):231–246CrossRefGoogle Scholar
  58. Xu M, Liu G (2013) A multipopulation firefly algorithm for correlated data routing in underwater wireless sensor networks. Int J Distrib Sens Netw. doi: 10.1155/2013/865154
  59. Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press, BeckingtonGoogle Scholar
  60. Yang X-S (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley, New YorkCrossRefGoogle Scholar
  61. Yang X-S, Hosseini SSS, Gandomi AH (2012) Firefly algorithm for solving non-convex economic dispatch problems with valve loading effect. Appl Soft Comput 12(3):1180–1186CrossRefGoogle Scholar
  62. Yu S, Su S, Lu Q, Huang L (2014) A novel wise step strategy for firefly algorithm. Int J Comput Math 91(12):2507–2513MathSciNetzbMATHCrossRefGoogle Scholar
  63. Yu S, Zhu S, Ma Y, Mao D (2015) A variable step size firefly algorithm for numerical optimization. Appl Math Comput 263:214–220MathSciNetGoogle Scholar
  64. Zheng Y, Jeon B, Xu D, Wu QM, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hui Wang
    • 1
    • 2
  • Xinyu Zhou
    • 3
  • Hui Sun
    • 2
  • Xiang Yu
    • 2
  • Jia Zhao
    • 2
  • Hai Zhang
    • 2
  • Laizhong Cui
    • 4
    Email author
  1. 1.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina
  2. 2.School of Information EngineeringNanchang Institute of TechnologyNanchangChina
  3. 3.College of Computer and Information EngineeringJiangxi Normal UniversityNanchangChina
  4. 4.College of Computer Science and Software EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations