Soft Computing

, Volume 21, Issue 9, pp 2421–2437 | Cite as

Trajectory planning for autonomous mobile robot using a hybrid improved QPSO algorithm

  • Tao Xue
  • Renfu Li
  • Myongchol Tokgo
  • Junchol Ri
  • Gyanghyok Han
Methodologies and Application


This paper proposes a hybrid improved quantum-behaved particle swarm optimization (LTQPSO) for autonomous mobile robot (AMR) trajectory planning in the environment with random obstacles. The algorithm combines the individual particle evolutionary rate and the swarm dispersion with natural selection method in particle evolution process. It is tested on several benchmark functions and proved that the convergence capability and accuracy are better than conventional QPSO, WQPSO and IQPSOS algorithms. To assess the effectiveness and feasibility of the proposed method on real problems, it is applied to the trajectory planning for AMR in the environment with random obstacles. The relationships between basic parameters are analyzed and formulated according to initial distribution of the LTQPSO. To show the high capability of the improved method, the LTQPSO is compared with QPSO, WQPSO and IQPSOS in the aspects of solution quality, robustness and convergence property. Experimental results demonstrate that the modified LTQPSO is very effective.


Autonomous mobile robot Trajectory planning Quantum-behaved particle swarm optimization Individual particle evolutionary rate Swarm dispersion Natural selection 



This research was sponsored in part by the Ministry of Science and Technology Fund Project (Contract No. 2015DFA81640) and Aeronautical Science Foundation of China (Contract No. 20130179002) at the Huazhong University of Science and Technology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. Cardenas S, Garibaldi J, Aguilar LT, Castillo O (2005) Intelligent control and planning of autonomous mobile robots using fuzzy logic and multiple objective genetic algorithms. In: Analysis and design of intelligent systems using soft computing techniques, pp 799–807. doi: 10.1007/978-3-540-72432-2-80
  2. Castillo O, Trujillo L, Melin P (2007) Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots. Soft Comput 11(3):269–279. doi: 10.1007/s00500-006-0068-4 CrossRefGoogle Scholar
  3. Coelho LS (2007) Novel gaussian quantum-behaved particle swarm optimiser applied to electromagnetic design. Sci Meas Technol 1(5):290–294. doi: 10.1049/iet-smt:20060124 CrossRefGoogle Scholar
  4. Coelho LS (2010) Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst Appl 37(2):1676–1683. doi: 10.1016/j.eswa.2009.06.044 CrossRefGoogle Scholar
  5. Davoodi E, Hagh MT, Zadeh SG (2014) A hybrid improved quantum-behaved particle swarm optimization-simplex method (IQPSOS) to solve power system load flow problems. Appl Soft Comput 21:171–179. doi: 10.1016/j.asoc.2014.03.004 CrossRefGoogle Scholar
  6. Deng M, Inoue A, Sekiguchi K, Jiang L (2010) Two-wheeled mobile robot motion control in dynamic environments. Robot Comput Integr Manuf 26(3):268–272. doi: 10.1016/j.rcim.2009.11.005 CrossRefGoogle Scholar
  7. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1:3–18Google Scholar
  8. Fang W, Sun J, Xie Z, Xu W (2010) Convergence analysis of quantum-behaved particle swarm optimization algorithm and study on its control parameter. Acta Phys Sin 59(6):3686–3694. doi: 10.1162/EVCO-a-00049 MATHGoogle Scholar
  9. Fang W, Sun J, Wu X, Palade V (2014) Adaptive web QoS controller based on online system identification using quantum-behaved particle swarm optimization. Soft Comput. doi: 10.1007/s00500-014-1359-9 Google Scholar
  10. Fu Y, Ding M, Zhou C (2012) Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV. IEEE Trans Syst Man Cybern Part A: Syst Hum 42(2):511–526. doi: 10.1109/TSMCA.2011.2159586 CrossRefGoogle Scholar
  11. Fu Y, Ding M, Zhou C, Hu H (2013) Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization. IEEE Trans Syst Man Cybern Syst 43(6):1451–1465. doi: 10.1109/TSMC.2013.2248146 CrossRefGoogle Scholar
  12. Garcia MAP, Montiel O, Castillo O (2009) Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evolution. Appl Soft Comput 9(9):1102–1110. doi: 10.1016/j.asoc.2009.02.014 CrossRefGoogle Scholar
  13. Garibaldi J, Barreras A, Castillo O (2007) Intelligent control and planning of autonomous algorithms mobile robots using fuzzy logic and genetic. In: Hybrid intelligent systems, pp 255–265. doi: 10.1007/978-3-540-37421-3-16
  14. Guo J, Wang J, Cui G (2009) Online path planning for UAV navigation based on quantum particle swarm optimization. Adv Intell Soft Comput 19:291–302. doi: 10.1007/978-3-642-11276-8-37
  15. Hassan R, Cohanim BE, de Weck OL (2005) Comparison of particle swarm optimization and the genetic algorithm. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference. American Institute of Aeronautics and Astronautics, Austin, Texas, AIAA-2005-1897Google Scholar
  16. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948. doi: 10.1109/ICNN.1995.488968
  17. Knepper RA, Mason MT (2012) Real-time informed path sampling for motion planning search. Int J Robot Res 31(11):1231–1250. doi: 10.1177/0278364912456444 CrossRefGoogle Scholar
  18. Li Y, Xiang R, Jiao L, Liu R (2012) An improved cooperative quantum-behaved particle swarm optimization. Soft Comput 16:1061–1069. doi: 10.1007/s00500-012-0803-y CrossRefGoogle Scholar
  19. Li Y, Jiao L, Shang R, Stolkin R (2015) Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Inf Sci 294:408–422. doi: 10.1016/j.ins.2014.10.005 MathSciNetCrossRefGoogle Scholar
  20. Mariani VC, Duck ARK, Guerra FA, Coelho LS, Rao RV (2012) A chaotic quantum-behaved particle swarm approach applied to optimization of heat exchangers. Appl Therm Eng 42:119–128. doi: 10.1016/j.applthermaleng.2012.03.022
  21. Sun J, Feng B, Xu W (2004) Particle swarm optimization with particles having quantum behavior. In: Proceedings of the 2004 congress on evolutionary computation, CEC2004, Portland, USA, pp 325–331. doi: 10.1109/CEC.2004.1330875
  22. Sun J, Lai CH, Xu W, Ding Y, Chai Z (2007) A modified quantum-behaved particle swarm optimization. Lect Notes Comput Sci 4487:294–301. doi: 10.1007/978-3-540-72584-8-38 CrossRefGoogle Scholar
  23. Sun J, Wu X, Palade V, Fang W, Lai CH, Xu W (2012) Convergence analysis and improvements of quantum-behaved particle swarm optimization. Inf Sci 193:81–103. doi: 10.1016/j.ins.2012.01.005 MathSciNetCrossRefGoogle Scholar
  24. Tang D, Cai Y, Zhao J, Xue Y (2014) A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous non-linear large scale problems. Inf Sci 289:162–189. doi: 10.1016/j.ins.2014.08.030 CrossRefGoogle Scholar
  25. Tokgo M, Li R, Kim C, L LH, Kim M (2014) A method for trajectory planning of mobile robot in random obstacles environment. In: Sixth international conference on intelligent human-machine systems and cybernetics, pp 51–54. doi: 10.1109/IHMSC.2014.115
  26. Xi M, Sun J, Xu W (2008) An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl Math Comput 205:751–759. doi: 10.1016/j.amc.2008.05.135 MATHGoogle Scholar
  27. Zar JH (2009) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar
  28. Zhuang H, Du SX, Wu T (2006) On-line real time path planning of mobile robots in dynamic uncertain environment. J Zhejiang Univ Sci A 7(4):514–524. doi: 10.1631/jzus.2006.A0516

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tao Xue
    • 1
  • Renfu Li
    • 1
  • Myongchol Tokgo
    • 1
    • 2
  • Junchol Ri
    • 2
  • Gyanghyok Han
    • 2
  1. 1.Digital Manufacturing Equipment and Technology National Key Laboratory, School of Aerospace EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Mechanical Science and TechnologyKim Chaek University of TechnologyPyongyangDemocratic People’s Republic of Korea

Personalised recommendations