Soft Computing

, Volume 21, Issue 7, pp 1709–1720 | Cite as

An improved problem aware local search algorithm for the DNA fragment assembly problem

  • Abdelkamel Ben Ali
  • Gabriel Luque
  • Enrique Alba
  • Kamal E. Melkemi
Methodologies and Application


DNA fragment assembly is a critical and essential early task in a genome project. This task leads to an NP-hard combinatorial optimization problem, and thus, efficient approximate algorithms are required to tackle large problem instances. The Problem Aware Local Search (PALS) is one of the most efficient heuristics for this problem in the literature. PALS gives fairly good solutions but the probability of premature convergence to local optima is significant. In this paper, we propose two modifications to the PALS heuristic in order to ameliorate its performance. The first modification enables the algorithm to improve the tentative solutions in a more appropriate and beneficial way. The second modification permits a significant reduction in the computational demands of the algorithm without significant accuracy loss. Computational experiments confirm that our proposals lead to a more efficient and robust assembler, improving both accuracy and efficiency.


Combinatorial optimization  DNA fragment assembly Problem Aware Local Search 


  1. Alba E, Dorronsoro B (2009) Cellular genetic algorithms, vol 42, chap 15—Bioinformatics: The DNA fragment assembly problem. Springer, Berlin, pp 203–210Google Scholar
  2. Alba E, Luque G (2007) A new local search algorithm for the DNA fragment assembly problem. In: Cotta C, van Hemert J (eds) Evolutionary computation in combinatorial optimization: EvoCOP’07, LNCS, vol 4446, Springer, Valencia, Spain, pp 1–12Google Scholar
  3. Alba E, Luque G (2008) A hybrid genetic algorithm for the dna fragment assembly problem. In: Cotta C, van Hemert J (eds) Recent Advances in Evolutionary Computation for Combinatorial Optimization, Studies in Computational Intelligence, vol 153, Springer, pp 101–112Google Scholar
  4. Burks C, Engle M, Forrest S, Parsons R, Soderlund C, Stolorz P (1994) Stochastic optimization tools for genomic sequence assembly. Automated DNA sequencing and analysis. Academic Press, London, pp 249–259Google Scholar
  5. Chen T, Skiena SS (1997) Trie-based data structures for sequence assembly. In: Proceedings of the 8th annual symposium on combinatorial pattern matching. Springer, Berlin, pp 206–223Google Scholar
  6. Dorronsoro B, Alba E, Luque G, Bouvry P (2008) A self-adaptive cellular memetic algorithm for the DNA fragment assembly problem. In: Proceedings of IEEE congress on evolutionary computation, pp 2651–2658Google Scholar
  7. Engle ML, Burks C (1993) Artificially generated data sets for testing DNA sequence assembly algorithms. Genomics 16(1):286–288CrossRefGoogle Scholar
  8. Firoz JS, Rahman MS, Saha TK (2012) Bee algorithms for solving DNA fragment assembly problem with noisy and noiseless data. In: Proceedings of the 14th annual conference on genetic and evolutionary computation, ACM, New York, pp 201–208Google Scholar
  9. Green P (1994) Phrap,
  10. Huang KW, Chen JL, Yang CS, Tsai CW (2015) A memetic particle swarm optimization algorithm for solving the DNA fragment assembly problem. Neural Comput Appl 26(3):495–506CrossRefGoogle Scholar
  11. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877CrossRefGoogle Scholar
  12. Kubalik J, Buryan P, Wagner L (2010) Solving the DNA fragment assembly problem efficiently using iterative optimization with evolved hypermutations. In: Proceedings of the 12th annual conference on Genetic and evolutionary computation, ACM, New York, pp 213–214Google Scholar
  13. Li L, Khuri S (2004) A comparison of DNA fragment assembly algorithms. METMBS 4:329–335Google Scholar
  14. Luque G, Alba E, Khuri S (2006) Parallel Algorithms for bioinformatics. Assembling DNA fragments with a distributed genetic algorithm, chapter 16. Wiley, New YorkGoogle Scholar
  15. Mallén-Fullerton GM, Hughes JA, Houghten S, Fernández-Anaya G (2013) Benchmark datasets for the DNA fragment assembly problem. Int J Bio-Inspired Comput 5(6):384–394CrossRefGoogle Scholar
  16. Meksangsouy P, Chaiyaratana N (2003) DNA fragment assembly using an ant colony system algorithm. In: Evolutionary computation, 2003. CEC’03. The 2003 Congress, IEEE, vol 3, pp 1756–1763Google Scholar
  17. Minetti G, Alba E, Luque G (2008) Seeding strategies and recombination operators for solving the DNA fragment assembly problem. Inf Process Lett 108(3):94–100MathSciNetCrossRefMATHGoogle Scholar
  18. Minetti G, Leguizamón G, Alba E (2014) An improved trajectory-based hybrid metaheuristic applied to the noisy DNA fragment assembly problem. Inf Sci 277:273–283MathSciNetCrossRefGoogle Scholar
  19. Myers EW (1995) Toward simplifying and accurately formulating fragment assembly. J Comput Biol 2(2):275–290MathSciNetCrossRefGoogle Scholar
  20. Nebro AJ, Luque G, Luna F, Alba E (2008) DNA fragment assembly using a grid-based genetic algorithm. Comput Op Res 35(9):2776–2790CrossRefMATHGoogle Scholar
  21. Parsons RJ, Forrest S, Burks C (1995) Genetic algorithms, operators, and DNA fragment assembly. Mach Learn 21(1–2):11–33Google Scholar
  22. Pevzner P (2000) Computational molecular biology: an algorithmic approach. MIT Press, CambridgeMATHGoogle Scholar
  23. Pop M (2004) Shotgun sequence assembly. Adv Comput 60:193–248CrossRefGoogle Scholar
  24. Setubal JC, Meidanis J (1997) Introduction to computational molecular biology. Fragment assembly of DNA, Chap 4. University of Campinas, Brazil, pp 105–139Google Scholar
  25. Sutton GG, White O, Adams MD, Kerlavage AR (1995) TIGR assembler: a new tool for assembling large shotgun sequencing projects. Genome Sci Technol 1(1):9–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Abdelkamel Ben Ali
    • 1
    • 3
  • Gabriel Luque
    • 2
  • Enrique Alba
    • 2
  • Kamal E. Melkemi
    • 3
  1. 1.Department of Computer ScienceUniversity of El-OuedEl-OuedAlgeria
  2. 2.Universidad de Málaga, Andalucía Tech, Departamento de Lenguajes y Ciencias de ComunicaciónMalagaSpain
  3. 3.Department of Computer ScienceUniversity of BiskraBiskraAlgeria

Personalised recommendations