Soft Computing

, Volume 21, Issue 5, pp 1291–1300 | Cite as

Fuzzy clustering algorithms for identification of Exocarpium Citrus Grandis through chromatography

  • Hang Wei
  • Li Lin
  • Honglai Zhang
  • Yangyang Xu
  • Shaodong Deng
  • Jiajing Yu
  • Jiaming Hong
  • Rui Chen
  • Qinqun Chen
Methodologies and Application


Chromatography has been extensively applied in identification and quality control of Chinese medicines (CMs). However, regular analytical methods are not suitable if labeled patterns or reference patterns are not available. Unsupervised and semi-supervised recognition approaches for chromatographic patterns, namely nonrandomized fuzzy C-Means clustering (FCM) with weighted principal components (NWPC-FCM) and partial supervised FCM with weighted PCs (PSWPC-FCM) are proposed in this work. The basic ideas of the proposed algorithms are as follows: PCs are extracted and weighted according to corresponding variances via principal component analysis to search for more complicated geometry of fuzzy clusters, then nonrandomized methodology and partial supervised clustering with seeds are employed, respectively, in NWPC-FCM and PSWPC-FCM to determine initial cluster centers for reliable cluster results. Satisfactory results were achieved with this method in identification of Exocarpium Citrus Grandis, a genuine herbal medicine of Guangdong Province. The presented algorithms improve cluster effectiveness and reliability significantly compared with standard FCM, PC-FCM, and two widely utilized clustering methods on chromatographic analysis. The research indicates the proposed algorithms exhibit functional applicability and interpretability for pattern recognition in chromatographic fingerprints of CMs in the presence of limited labeling or reference information.


Fuzzy clustering Exocarpium Citrus Grandis Chromatographic fingerprints Fuzzy C-Means Principal component analysis Initiation of cluster centers Clustering validation 


  1. Amigo JM, Skov T, Bro R (2010) Chromathography: solving chromatographic issues with mathematical models and intuitive graphics. Chem Rev 110(8):4582–4605CrossRefGoogle Scholar
  2. Basu S, Banerjee A, Mooney R (2002) Semi-supervised clustering by seeding. In: In Proceedings of 19th International conference on machine learning (ICML-2002), CiteseerGoogle Scholar
  3. Berkhin P (2006) A survey of clustering data mining techniques. In: Kogan J, Nicholas C, Teboulle M (eds) Grouping multidimensional data. Springer, Berlin, pp 25–71CrossRefGoogle Scholar
  4. Bouchachia A, Pedrycz W (2006) Enhancement of fuzzy clustering by mechanisms of partial supervision. Fuzzy Sets Syst 157(13):1733–1759MathSciNetCrossRefMATHGoogle Scholar
  5. Chen YQ, Ni YN (2009) Application of chemical pattern recognition techniques in food quality control. Chem Res Appl 21(1):1–7Google Scholar
  6. Chinese Pharmacopoeia Commission (2010) Pharmacopoeia of the People’s Republic of China. I. China Medical Science Press, BeijingGoogle Scholar
  7. Dharmaraj S, Gam LH, Sulaiman S, Mansor SM, Ismail Z (2011) The application of pattern recognition techniques in metabolite fingerprinting of six different phyllanthus spp. J Spectrosc 26(1):69–78CrossRefGoogle Scholar
  8. Esposito C, Ficco M, Palmieri F, Castiglione A (2013) Interconnecting federated clouds by using publish-subscribe service. Clust Comput 16(4):887–903CrossRefGoogle Scholar
  9. Esposito C, Ficco M, Palmieri F, Castiglione A (2015) Smart cloud storage service selection based on fuzzy logic, theory of evidence and game theory. IEEE Trans Comput 1:1–1 (in press)Google Scholar
  10. Graves D, Pedrycz W (2010) Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study. Fuzzy Sets Syst 161(4):522–543MathSciNetCrossRefGoogle Scholar
  11. Intarapaiboon P (2015) A hierarchy-based similarity measure for intuitionistic fuzzy sets. Soft Comput 1–11. doi:10.1007/s00500-015-1612-x
  12. Li T, Ma S, Ogihara M (2004) Entropy-based criterion in categorical clustering. In: Proceedings of the 21st international conference on machine learning, ACM, p 68Google Scholar
  13. Liang YZ, Xie PS, Chan K (2010) Perspective of chemical fingerprinting of chinese herbs. Planta medica 76(17):1997–2003CrossRefGoogle Scholar
  14. Lin L, Chen ZX, Yuan XJ, Li XM (2004) Assessment of the quality of two different species of Exocarpium Citrus Grandis. J Guangzhou Univ Tradit Chin Med 21(4):308–312Google Scholar
  15. Liu J, Chen XF, Zou YF (2012) Process on chemical pattern recognition in traditional chinese medicines by multidimensional information of metabolic fingerprinting analysis. China J Chin Mater Med 37(8):1081–1088Google Scholar
  16. Liu Q, Xia SX, Zhou Y, Liu B (2011) Fuzzy clustering algorithm using two weighting methods. Appl Res Comput 28(12):4437–4439Google Scholar
  17. Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval, vol 1. Cambridge University Press, New YorkCrossRefMATHGoogle Scholar
  18. Mohri M, Rostamizadeh A, Talwalkar A (2012) Foundations of machine learning. MIT Press, CamnbridgeMATHGoogle Scholar
  19. Nie L, Cao J, Luo GA, Wang YM (2004) Comparison of different methods for evaluating the similarity of the fingerprints of traditional Chinese medicines. Chin Tradit Patent Med 27(3):249–252Google Scholar
  20. Osmani V, Carreras I, Matic A, Saar P (2014) An analysis of distance estimation to detect proximity in social interactions. J Ambient Intell Hum Comput 5(3):297–306CrossRefGoogle Scholar
  21. Pedrycz W (2005) Knowledge-based clustering: from data to information granules. Wiley, HobokenCrossRefMATHGoogle Scholar
  22. Pedrycz W, Al-Hmouz R, Morfeq A, Balamash AS (2014) Distributed proximity-based granular clustering: towards a development of global structural relationships in data. Soft Comput 1–17. doi:10.1007/s00500-014-1439-x
  23. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496CrossRefGoogle Scholar
  24. Rong R, Lü QT, Chao JF, Yang Y (2008) Study on the radix et rhizoma salvia miltiorrhizae from different sources in shandong province by high performance liquid chromatography fingerprints and chemical pattern recognition. Chem Anal Meterage 17(1):24Google Scholar
  25. Sun GX, Song Y, Bi YM, Zhi XZ (2007) Quality control system of overall qualitative similarities and overall quantitative similarities of chromatographic fingerprints. Central S Pharm 5(3):263–268Google Scholar
  26. Toporkov V, Toporkova A, Tselishchev A, Yemelyanov D, Potekhin P (2015) Heuristic strategies for preference-based scheduling in virtual organizations of utility grids. J Ambient Intell Hum Comput 1–8. doi:10.1007/s12652-015-0274-y
  27. Tsai CW, Huang KW, Yang CS, Chiang MC (2014) A fast particle swarm optimization for clustering. Soft Comput 19(2):321–338CrossRefGoogle Scholar
  28. Wang XC, Paliwal KK (2003) Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recognit 36(10):2429–2439CrossRefMATHGoogle Scholar
  29. Wei H, Lin L, Huang ZY (2011) The application of neural network in the discrimination of two different species of exocarpium citrus grandis. J Guangzhou Univ Chin Med 28(3):272–276Google Scholar
  30. Wei H, Lin L, Chen PP, Tan DY, Chen QQ (2012) Research on the similarity algorithm of chromatographic fingerprint based on information entropy. In: 2nd international conference on electronic & mechanical engineering and information technology. Atlantis Press, AmsterdamGoogle Scholar
  31. Wei H, Lin L, Zhang Y, Wang LJ, Chen QQ (2013) Research on the application of grey system theory in the pattern recognition for chromatographic fingerprints of traditional chinese medicine. Chin J Chromatogr 31(2):127–132CrossRefGoogle Scholar
  32. Xu AR, Hu XW (2009) Identification of fructus Schisandrae Chinensis and Fructus Schisandrae Sphenantherae by RP-HPLC and its cluster analysis and discriminant analysis. Chin J Mod Appl Pharm 26(1):29Google Scholar
  33. Xu CJ, Liang YZ, Chau FT, Vander Heyden Y (2006) Pretreatments of chromatographic fingerprints for quality control of herbal medicines. J Chromatogr A 1134(1):253–259CrossRefGoogle Scholar
  34. Xu R, Wunsch D et al (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678CrossRefGoogle Scholar
  35. Yuan P, Zhang MG, Yuan M, Zu L, Hu YM, Zhou JQ (2005) Application of fuzzy cluster analysis in determining fingerprints spectrum of curcuma aromatica salib by Pyrolysis gas chromatography. Comput Appl Chem 22(3):201–205Google Scholar
  36. Yuan XJ (2004) Fingerprint and quantification of Exocarpium Citrus Grandis. Guangzhou University of Chinese Medicine, Guangzhou, China, pp 50–57Google Scholar
  37. Zheng XK, Wei Y, Feng WS (2007) Chemical pattern recognition for hplc fingerprint analysis of Flos Lonicerae Japonicae in different collecting time. J Chin Med Mater 30(10):1203–1206Google Scholar
  38. Zhou J, Xiong ZY, Zhang YF, Ren F (2006) Multiseed clustering algorithm based on max-min distance means. J Comput Appl 26(6):1425–1427Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hang Wei
    • 1
    • 3
  • Li Lin
    • 2
  • Honglai Zhang
    • 3
  • Yangyang Xu
    • 1
  • Shaodong Deng
    • 5
  • Jiajing Yu
    • 3
  • Jiaming Hong
    • 3
  • Rui Chen
    • 4
  • Qinqun Chen
    • 3
  1. 1.School of Computer and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Chinese MaterialMedicalGuangzhou University of Chinese MedicineGuangzhouChina
  3. 3.School of Medical Information EngineeringGuangzhou University of Chinese MedicineGuangzhouChina
  4. 4.Department of Computer ScienceGuangzhou UniversityGuangzhouChina
  5. 5.Gangdong Medical UniversityGuangzhouChina

Personalised recommendations