Skip to main content

Data stream visualization framework for smart cities

Abstract

Monitoring smart cities is a key challenge due the variety of data streams generated from different process (traffic, human dynamics, pollution, energy supply, water supply, etc.). All these streams show us what is happening and as to where and when in the city. The purpose of this paper was to apply different types of glyphs for showing real-time stream evolution of data gathered in the city. The use of glyphs is intended to make the most out of the human capacity for detecting visual patterns.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Blog SC (2014) Video ‘must haves’ for active surveillance. http://security.americandynamics.net/blog/bid/69402/Video-must-haves-for-active-surveillance

  2. Cai Y (2007) Instinctive computing. In: Artifical intelligence for human computing, Lecture notes in computer Science, vol 4451. Springer, Berlin, pp 17–46

  3. Cavallari R, Martelli F, Rosini R, Buratti C, Verdone R (2014) A survey on wireless body area networks: technologies and design challenges. Commun Surv Tutor IEEE 16(3):1635–1657

    Article  Google Scholar 

  4. Childs H, Geveci B, Schroeder W, Meredith J, Moreland K, Sewell C, Kuhlen T, Bethel E (2013) Research challenges for visualization software. Computer 46(5):34–42

    Article  Google Scholar 

  5. Haklay MM, Weber P (2008) Openstreetmap: user-generated street maps. IEEE Pervasive Comput 7(4):12–18

    Article  Google Scholar 

  6. Hao M, Marwah M, Mittelstadt S, Janetzko H, Keim D, Dayal U, Bash C, Felix C, Patel C, Hsu M, Chen Y (2012) Exploring cyber physical data streams using radial pixel visualizations. In: Visual analytics science and technology (VAST), 2012 IEEE Conference on, pp 225–226. doi:10.1109/VAST.2012.6400541

  7. Henning M (2004) A new approach to object-oriented middleware. IEEE Internet Comput 8(1):66–75

  8. Hsu C-W, Chang CC, Lin CJ (2010) A practical guide to support vector classification. National Taiwan University

  9. Moya F, Villa D, Villanueva FJ, Barba J, Rincön F, Löpez JC (2009) Embedding standard distributed object-oriented middlewares in wireless sensor networks. Wirel Commun Mob Comput 9(3):335–345. doi:10.1002/wcm.545

  10. Park HK, Lee YW, Jang SI, Lee IP (2010) Online visualization of urban noise in ubiquitous-city middleware. In: Advanced communication technology (ICACT), 2010 The 12th international conference on, vol 1, pp 268–271

  11. Park JW, Yun CH, Jung HS, Lee YW (2011) Visualization of urban air pollution with cloud computing. In: Services (SERVICES), 2011 IEEE world congress on, pp 578–583

  12. Rhyne T, Chen M (2013) Cutting-edge research in visualization. Computer 46(5):22–24

    Article  Google Scholar 

  13. Sapankevych N, Sankar R (2009) Time series prediction using support vector machines: a survey. Comput Intell Mag IEEE 4(2):24–38

    Article  Google Scholar 

  14. Tory M, Möller T (2004) Human factors in visualization research. IEEE Trans Vis Comput Graph 10:72–84

    Article  Google Scholar 

  15. Villanueva F, Santofimia M, Villa D, Barba J, Lopez J (2013) Civitas: the smart city middleware, from sensors to big data. In: Innovative mobile and internet services in ubiquitous computing (IMIS), 2013 Seventh international conference on, pp 445–450

Download references

Acknowledgments

This work has been partly funded by the Spanish Ministry of Economy and Competitiveness under project REBECCA (TEC2014-58036-C4-1-R) and by the Regional Government of Castilla-La Mancha under project SAND (PEII_2014_046_P).

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. J. Villanueva.

Additional information

Communicated by A. Jara, M.R. Ogiela, I. You and F.-Y. Leu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Villanueva, F.J., Aguirre, C., Rubio, A. et al. Data stream visualization framework for smart cities. Soft Comput 20, 1671–1681 (2016). https://doi.org/10.1007/s00500-015-1829-8

Download citation

Keywords

  • Smart cities
  • Data visualization
  • Human behaviour understanding