Skip to main content
Log in

A note on many valued quantum computational logics

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The standard theory of quantum computation relies on the idea that the basic information quantity is represented by a superposition of elements of the canonical basis and the notion of probability naturally follows from the Born rule. In this work we consider three valued quantum computational logics. More specifically, we will focus on the Hilbert space \(\mathbb C^{3}\), we discuss extensions of several gates to this space and, using the notion of effect probability, we provide a characterization of its states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The extensive definition of a density operator \(\rho \) on \(\mathbb C^3\) is provided in the next section. When a qutrit quantum gate A is applied to a density operator \(\rho \) on \(\mathbb C^3\), the evolution of \( \rho \) is given by: \(A\rho A^{\dagger }\). Since no danger of confusion will be impending, for the sake of notational simplicity, from now on we write \(A(\rho )\).

References

  • Anwar H, Campbell ET, Browne DE (2012) Qutrit magic state distillation. arXiv:1202.2326v2

  • Bertini C, Leporini R (2007) Quantum computational finite-valued logics. Int J Quantum Inf 5:641–665

    Article  MATH  Google Scholar 

  • Broers B, van den Heuvel HBV, Noordam LD (1992) Efficient population transfer in a 3-level ladder system by frequency-swept ultrashort laser-pulses. Phys Rev Lett 69(14):2062–2065

  • Bush P, Grabowski M, Lahti PJ (1995) Operational quantum physics. Springer, Berlin

    MATH  Google Scholar 

  • Cattaneo G, Dalla Chiara ML, Giuntini R, Leporini R (2004) An unsharp logic from quantum computation. Int J Theor Phys 43(7–8):1803–1817

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Dalla Chiara ML, Giuntini R, Leporini R (2004) Quantum computational structures. Math Slovaca 54:87–108

    MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Dalla Chiara ML, Giuntini R, Paoli F (2009) Quantum logic and nonclassical logics. In: Engesser K, Gabbay DM, Lehmann D (eds) Handbook of quantum logic and quantum structures. Elsevier, Amsterdam, pp 127–235

    Chapter  Google Scholar 

  • Chernoff H, Moses LE (2012) Elementary decision theory. Wiley, New York

    MATH  Google Scholar 

  • Dalla Chiara ML, Giuntini R, Greechie R (2004) Reasoning in quantum theory. Kluwer, Dordrecht

  • Dalla Chiara ML, Giuntini R, Leporini R (2003) Quantum computational logics: a survey. In: Hendricks VF, Malinowski J (eds) Trends in logic: 50 years of studia logica. Kluwer, Dordrecht, pp 229–271

  • Dalla Chiara ML, Giuntini R, Leporini R (2005) Logics from quantum computation. Int J Quantum Inf 3(2):293–337

  • Dalla Chiara ML, Giuntini R, Freytes H, Ledda A, Sergioli G (2009) The algebraic structure of an approximately universal system of quantum computational gates. Found Phys 39(6):559–572

  • Dalla Chiara ML, Giuntini R, Ledda A, Sergioli G (2013) The Toffoli–Hadamard gate system: an algebraic approach. J Philos Log 42(3):467–481

  • Dalla Chiara ML, Giuntini R, Sergioli G (2014) Probability in quantum computation and in quantum computational logics. A survey. Math Struct Comput Sci 24(03):1–14

  • Der Kiureghiana A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112

    Article  Google Scholar 

  • Freytes H, Ledda A, Sergioli G, Giuntini R (2013) Probabilistic logics in quantum computation. In: Andersen H, Dieks D, Gonzalez WJ, Uebel T, Wheeler G (eds) New challenges to philosophy of science. The philosophy of science in a European perspective, vol 4. Springer, Dordrecht, pp 49–57

  • Fine K (1975) Vagueness, truth and logic. Synthese 30(3–4):265–300

    Article  MATH  Google Scholar 

  • Giuntini R, Freytes H, Ledda A, Paoli F (2009) A discriminator variety of Gödel algebras with operators arising in quantum computation. Fuzzy Sets Syst 160(8):1082–1098

    Article  MATH  Google Scholar 

  • Giuntini R, Greulin H (1989) Toward a formal language for unsharp properties. Found Phys 19(7):931–945

    Article  MathSciNet  Google Scholar 

  • Giuntini R, Ledda A, Sergioli G, Paoli F (2011) Some generalisations of fuzzy structures arising in quantum computational logic. Int J Gen Syst 40(1):61–83

    Article  MathSciNet  MATH  Google Scholar 

  • Goguen JA (1969) The logic of inexact concepts. Synthese 19(3–4):325–373

    Article  MATH  Google Scholar 

  • Goyal SK, Simon NB, Singh R, Simon S (2011) Geometry of the generalized Bloch sphere for qutrit. arXiv:1111.4427

  • Gudder S (1998) Sharp and unsharp quantum effects. Adv Appl Math 20(2):169–187

    Article  MathSciNet  MATH  Google Scholar 

  • Hàjek P (1998) Metamathematics of fuzzy logic. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Keefe R, Smith P (1996) Vagueness: a reader. MIT press, Cambridge

    Google Scholar 

  • Lindley DV (2006) Understanding uncertainty. Wiley, New York

    Book  MATH  Google Scholar 

  • Matthies HG (2007) Quantifying uncertainty: modern computational representation of probability and applications. In: Ibrahimbegovic A, Kozar I (eds) Extreme man-made and natural hazards in dynamics of structures. NATO security through science series, pp 105–135

  • Muthukrishnan A, Stroud CR Jr (2000) Multi-valued logic gates for quantum computation. Phys Rev A 62(5):0523091–0523098

    Article  Google Scholar 

  • Paté-Cornell ME (1999) Uncertainties in risk analysis: six levels of treatment. Reliab Eng Syst Saf 54(2–3):95–111

    Google Scholar 

  • Schlienz J, Mahler G (1995) Description of entanglement. Phys Rev A 52(6):4396–4404

    Article  Google Scholar 

  • Schlosshauer M (2007) Decoherence and the quantum-to-classical transition, 1st edn. Springer, Berlin

    Google Scholar 

  • Tarasov VE (2002) Quantum computation by quantum operations on mixed states. arXiv:quant-ph/0201033

  • Timpson CG, Brown HR (2005) Proper and improper separability. Int J Quantum Inf 3:679–690

    Article  MATH  Google Scholar 

  • Williamson T (2002) Vagueness. Routledge, London

    Google Scholar 

  • Zurek WH (2007) Decoherence and the transition from quantum to classical—revisited. Quantum Decoherence Prog Math Phys 48:1–31

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Sergioli.

Additional information

Communicated by M.L. Dalla Chiara, R. Giuntini, E. Negri and S. Smets.

The authors acknowledge the support of MIUR within the FIRB project “Structures and Dynamics of Knowledge 24 and Cognition”, Cagliari: F21J12000140001 and of RAS within the project “Modeling the Uncertainty: Quantum Theory and Imaging Processing”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergioli, G., Ledda, A. A note on many valued quantum computational logics. Soft Comput 21, 1391–1400 (2017). https://doi.org/10.1007/s00500-015-1790-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1790-6

Keywords

Navigation