Advertisement

Soft Computing

, Volume 22, Issue 4, pp 1035–1046 | Cite as

Characterizations of recognizable weighted tree languages by logic and bimorphisms

  • Zoltán Fülöp
  • Heiko Vogler
Focus
  • 134 Downloads

Abstract

We give a general definition of weighted tree automata (wta) and define three instances which differ in the underlying weight algebras: semirings, multi-operator monoids, and tree-valuation monoids. Also, we define a general concept of weighted expressions based on monadic second-order logics. In the same way as for wta, we define three instances corresponding to the above-mentioned weight algebras. We prove that wta over semirings are equivalent to weighted expressions over semirings, and prove the same equivalence over tree-valuation monoids. For wta over semirings and for wta over tree-valuation monoids we prove characterizations in terms of bimorphisms.

Notes

Acknowledgments

The authors would like to thank the reviewers for pointing out (small) mistakes and for helpful suggestions.

References

  1. Alexandrakis A, Bozapalidis S (1987) Weighted grammars and Kleene’s theorem. Inf Process Lett 24(1):1–4MathSciNetCrossRefzbMATHGoogle Scholar
  2. Berstel J, Reutenauer C (1982) Recognizable formal power series on trees. Theor Comput Sci 18(2):115–148MathSciNetCrossRefzbMATHGoogle Scholar
  3. Borchardt B (2004) A pumping lemma and decidability problems for recognizable tree series. Acta Cybern 16(4):509–544MathSciNetzbMATHGoogle Scholar
  4. Comon H, Dauchet M, Gilleron R, Jacquemard F, Lugiez D, Tison S, Tommasi M (1997) Tree automata techniques and applications. http://www.grappa.univ-lille3.fr/tata
  5. Doner J (1970) Tree acceptors and some of their applications. J Comput Syst Sci 4:406–451MathSciNetCrossRefzbMATHGoogle Scholar
  6. Droste M, Gastin P (2005) Weighted automata and weighted logics. In: Caires L, Italiano GF, Monteiro L, Palamidessi C, Yung M, (eds) Automata, languages and programming—32nd international colloquium, ICALP 2005, Lisbon, Portugal, Lecture notes in computer science, vol 3580. Springer, Berlin, pp 513–525Google Scholar
  7. Droste M, Gastin P (2009) Weighted automata and weighted logics. In: Droste M, Kuich W, Vogler H (eds) Handbook of weighted automata, Chapter 5. Springer, BerlinGoogle Scholar
  8. Droste M, Vogler H (2013) The Chomsky–Schützenberger theorem for quantitative context-free languages. In: Proc. 17th int. conf. on developments in language theory (DLT 2013) 18th–21st of June 2013, Paris-Est, France. LNCS 7907. Springer, Berlin, pp 203–214. (See also Int. J. of Found. of Comp. Sci. 25 (2014) 955–969)Google Scholar
  9. Droste M, Vogler H (2011) Weighted logics for unranked tree automata. Theory Comput Syst 48(1):23–47. doi: 10.1007/s00224-009-9224-4 (Published online first, 29 June 2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Droste M, Götze D, Märcker S, Meinecke I (2011) Weighted tree automata over valuation monoids and their characterization by weighted logics. In: Kuich W, Rahonis G (eds) Bozapalidis festschrift, Lecture notes in computer Science, vol 7020. Springer, Berlin, pp 33–55Google Scholar
  11. Droste M, Vogler H (2006) Weighted tree automata and weighted logics. Theor Comput Sci 366:228–247MathSciNetCrossRefzbMATHGoogle Scholar
  12. Droste M, Gastin P (2007) Weighted automata and weighted logics. Theor Comput Sci 380(1–2):69–86MathSciNetCrossRefzbMATHGoogle Scholar
  13. Engelfriet J (1975) Bottom-up and top-down tree transformations—a comparison. Math Syst Theory 9:198–231MathSciNetCrossRefzbMATHGoogle Scholar
  14. Fülöp Z, Vogler H (2009) Weighted tree automata and tree transducers. In: Droste M, Kuich W, Vogler H (eds) Handbook of weighted automata, Chapter 9. Springer, Berlin, pp 313–403Google Scholar
  15. Fülöp Z, Stüber T, Vogler H (2012) A Büchi-like theorem for weighted tree automata over multioperator monoids. Theory Comput Syst 50(2):241–278. doi: 10.1007/s00224-010-9296-1 (Published online 28.10.2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. Fülöp Z, Maletti A, Vogler H (2009) A Kleene theorem for weighted tree automata over distributive multioperator monoids. Theory Comput Syst 44:455–499Google Scholar
  17. Gastin P (2014) Specification and verification of quantitative properties: expressions, logics, and automata. In: Survey lecture, 7th international workshop weighted automata: theory and applications, 5th–9th of May 2014. University of Leipzig, LeipzigGoogle Scholar
  18. Gécseg F, Steinby M (1997) Tree languages. In: Rozenberg G, Salomaa A (eds) Handbook of formal languages, vol 1. Springer, Berlin, pp 1–68Google Scholar
  19. Kuich W (1999) Linear systems of equations and automata on distributive multioperator monoids. In: Contributions to general algebra 12—proceedings of the 58th workshop on general algebra “58. Arbeitstagung Allgemeine Algebra”, Vienna University of Technology, Verlag Johannes Heyn, pp 1–10Google Scholar
  20. Nivat M (1968) Transduction des languages de Chomsky. Ann l’Inst Fourier 18:339–456CrossRefzbMATHGoogle Scholar
  21. Radovanovic D (2010) Weighted tree automata over strong bomonoids. Novi Sad J Math 40(3):89–108MathSciNetzbMATHGoogle Scholar
  22. Stüber T, Vogler H, Fülöp Z (2009) Decomposition of weighted multioperator tree automata. Int J Found Comput Sci 20:221–245MathSciNetCrossRefzbMATHGoogle Scholar
  23. Teichmann M, Osterholzer J (2015) A link between multioperator and tree valuation automata and logics. Theor Comput Sci. doi: 10.1016/j.tcs.2015.04.033
  24. Thatcher JW, Wright JB (1968) Generalized finite automata theory with an application to a decision problem of second-order logic. Math Syst Theory 2:57–81MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of SzegedSzegedHungary
  2. 2.Faculty of Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations