Skip to main content
Log in

Modelling and predicting partial orders from pairwise belief functions

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we introduce a generic way to represent and manipulate pairwise information about partial orders (representing rankings, preferences, ...) with belief functions. We provide generic and practical tools to make inferences from this pairwise information and illustrate their use on the machine learning problems that are label ranking and multi-label prediction. Our approach differs from most other quantitative approaches handling complete or partial orders, in the sense that partial orders are here considered as primary objects and not as incomplete specifications of ideal but unknown complete orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. \((\lambda _i, \lambda _j),(\lambda _j,\lambda _k) \in R \Rightarrow (\lambda _i,\lambda _k) \in R\).

  2. The data sets are available at http://www.uni-marburg.de/fb12/kebi/research/repository/labelrankingdata.

  3. The software can be downloaded from https://www.hds.utc.fr/~tdenoeux/.

References

  • Bache K, Lichman M (2013) UCI machine learning repository. University of California, School of Information and Computer Science, Irvine. http://archive.ics.uci.edu/ml

  • Blockeel H, Raedt LD, Ramon J (1998) Top-down induction of clustering trees. Proceedings of the 15th international conference on machine learning. Morgan Kaufmann Publishers Inc., San Francisco, pp 55–63

    Google Scholar 

  • Boutell MR, Luo J, Shen X, Brown CM (2004) Learning multi-label scene classification. Pattern Recogn 37(9):1757–1771

    Article  Google Scholar 

  • Boutilier C, Brafman RI, Domshlak C, Hoos HH, Poole D (2004) CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J Artif Intell Res (JAIR) 21:135–191

    MathSciNet  MATH  Google Scholar 

  • Cheng W, Rademaker M, De Baets B, Hüllermeier E (2010) Predicting partial orders: ranking with abstention. Machine learning and knowledge discovery in databases. Springer, Berlin, Heidelberg, pp 215–230

    Chapter  Google Scholar 

  • Cheng W, Waegeman W, Welker V, Hüllermeier E (2012) Label ranking with partial abstention based on thresholded probabilistic models. In: Advances in neural information processing systems, pp 2510–2518.

  • Chow C (1970) On optimum recognition error and reject tradeoff. IEEE Trans Inf Theory 16(1):41–46

    Article  MATH  Google Scholar 

  • Clare A, King RD (2001) Knowledge discovery in multi-label phenotype data. Principles of data mining and knowledge discovery. Springer, New York, pp 42–53

    Chapter  Google Scholar 

  • Cobb BR, Shenoy PP (2006) On the plausibility transformation method for translating belief function models to probability models. Int J Approx Reason 41(3):314–330

    Article  MathSciNet  MATH  Google Scholar 

  • Dekel O, Singer Y, Manning CD (2003) Log-linear models for label ranking. In: Advances in neural information processing systems, pp 497–504.

  • Denœux T (1995) A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans Syst Man Cybern 25(5):804–813

    Article  Google Scholar 

  • Denœux T, Masson M-H (2012) Evidential reasoning in large partially ordered sets. Ann Oper Res 195(1):135–161

    Article  MathSciNet  MATH  Google Scholar 

  • Destercke S (2013) A pairwise label ranking method with imprecise scores and partial predictions. Machine learning and knowledge discovery in databases. Springer, New York, pp 112–127

    Chapter  Google Scholar 

  • El Zoghby N, Cherfaoui V, Denœux T (2013) Optimal object association from pairwise evidential mass functions. 16th international conference on information fusion (FUSION). IEEE, New York, pp 774–780

    Google Scholar 

  • Elisseeff A, Weston J (2001) A kernel method for multi-labelled classification. In: Advances in neural information processing systems, pp 681–687.

  • Fürnkranz J, Hüllermeier E (2010) Preference learning. Springer, New York

    MATH  Google Scholar 

  • Fürnkranz J, Hüllermeier E, Mencía EL, Brinker K (2008) Multilabel classification via calibrated label ranking. Mach Learn 73(2):133–153

    Article  Google Scholar 

  • Grabisch M, Labreuche C (2008) A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. 4OR 6(1):1–44.

  • Greco S, Kadziński M, SŁowiński R (2011) Selection of a representative value function in robust multiple criteria sorting. Comput Oper Res 38(11):1620–1637

    Article  MathSciNet  MATH  Google Scholar 

  • Har-Peled S, Roth D, Zimak D (2003) Constraint classification for multiclass classification and ranking. Adv Neural Inf Process Syst 809–816.

  • Hüllermeier E, Furnkranz J, Cheng W, Brinker K (2008) Label ranking by learning pairwise preferences. Artif Intell 172(16–17):1897–1916

    Article  MATH  Google Scholar 

  • Kamishima T, Kazawa H, Akaho S (2011) A survey and empirical comparison of object ranking methods. Preference learning. Springer, New York, pp 181–201

    Google Scholar 

  • Kocev D, Vens C, Struyf J, Džeroski S (2007) Ensembles of multi-objective decision trees. Mach Learn ECML 2007:624–631

    Google Scholar 

  • Labreuche C (2010) On the robustness for the Choquet integral. Computational intelligence for knowledge-based systems design. Springer, New York, pp 484–493

    Chapter  Google Scholar 

  • Li T, Ogihara M (2006) Toward intelligent music information retrieval. IEEE Trans Multimed 8(3):564–574

    Article  Google Scholar 

  • Loza Mencía E, Park S-H, Fürnkranz J (2010) Efficient voting prediction for pairwise multilabel classification. Neurocomputing 73(7):1164–1176

    Article  Google Scholar 

  • Madjarov G, Kocev D, Gjorgjevikj D, Džeroski S (2012) An extensive experimental comparison of methods for multi-label learning. Pattern Recogn 45(9):3084–3104

    Article  Google Scholar 

  • Marden JI (1995) Analyzing and modeling rank data, vol 64. Chapman & Hall, London

    MATH  Google Scholar 

  • Rademaker M, De Baets B (2010) A threshold for majority in the context of aggregating partial order relations. 2010 IEEE international conference on fuzzy systems (FUZZ). IEEE, New York, pp 1–4

    Google Scholar 

  • Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85(3):333–359

    Article  MathSciNet  Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, New Jersey

    MATH  Google Scholar 

  • Smets P (1993) Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int J Approx Reason 9(1):1–35

    Article  MathSciNet  MATH  Google Scholar 

  • Smets P, Kennes R (1994) The transferable belief model. Artif Intell 66:191–234

    Article  MathSciNet  MATH  Google Scholar 

  • Tritchler D, Lockwood G (1991) Modelling the reliability of paired comparisons. J Math Psychol 35(3):277–293

    Article  MathSciNet  MATH  Google Scholar 

  • Troffaes M (2007) Decision making under uncertainty using imprecise probabilities. Int J Approx Reason 45(1):17–29

    Article  MathSciNet  MATH  Google Scholar 

  • Tsoumakas G, Katakis I (2007) Multi-label classification: an overview. Int J Data Wareh Min (IJDWM) 3(3):1–13

    Article  Google Scholar 

  • Tsoumakas G, Katakis I, Vlahavas I (2008) Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of the ECML/PKDD 2008 workshop on mining multidimensional data (MMD08), pp 30–44.

  • Tsoumakas G, Katakis I, Vlahavas I (2010) Mining multi-label data. Data mining and knowledge discovery handbook. Springer, New York, pp 667–685

    Google Scholar 

  • Tsoumakas G, Vlahavas I (2007) Random k-labelsets: an ensemble method for multilabel classification. Machine learning: ECML 2007. Springer, New York, pp 406–417

    Chapter  Google Scholar 

  • Ueda N, Saito K (2002) Parametric mixture models for multi-labeled text. In: Advances in neural information processing systems, pp 721–728.

  • Utkin LV (2009) A new ranking procedure by incomplete pairwise comparisons using preference subsets. Intell Data Anal 13(2):229–241

    MathSciNet  Google Scholar 

  • Vembu S, Gärtner T (2011) Label ranking algorithms: a survey. In: Preference learning, pp 45–64. Springer, New York.

  • Zaffalon M (2002) The naive credal classifier. J Probab Plan Inference 105:105–122

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang M-L, Zhou Z-H (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn 40(7):2038–2048

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was carried out in the framework of the Labex MS2T, which was funded by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Hélène Masson.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masson, MH., Destercke, S. & Denoeux, T. Modelling and predicting partial orders from pairwise belief functions. Soft Comput 20, 939–950 (2016). https://doi.org/10.1007/s00500-014-1553-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1553-9

Keywords

Navigation