Advertisement

Soft Computing

, Volume 19, Issue 3, pp 531–546 | Cite as

Paraconsistency properties in degree-preserving fuzzy logics

  • Rodolfo Ertola
  • Francesc Esteva
  • Tommaso Flaminio
  • Lluís Godo
  • Carles NogueraEmail author
Foundations

Abstract

Paraconsistent logics are specially tailored to deal with inconsistency, while fuzzy logics primarily deal with graded truth and vagueness. Aiming to find logics that can handle inconsistency and graded truth at once, in this paper we explore the notion of paraconsistent fuzzy logic. We show that degree-preserving fuzzy logics have paraconsistency features and study them as logics of formal inconsistency. We also consider their expansions with additional negation connectives and first-order formalisms and study their paraconsistency properties. Finally, we compare our approach to other paraconsistent logics in the literature.

Keywords

Mathematical fuzzy logic Degree-preserving fuzzy logics Paraconsistent logics Logics of formal inconsistency 

Notes

Acknowledgments

The authors are indebted to two anonymous referees for their critical and interesting remarks that have led to a significant improvement of the paper. All the authors have been partially supported by the FP7 PIRSES-GA-2009-247584 Project MaToMUVI. Besides, Ertola was supported by FAPESP LOGCONS Project and CONICET Project PIP 112201101006336, Esteva and Godo were supported by the Spanish Project TIN2012-39348-C02-01, Flaminio was supported by the Italian project FIRB 2010 (RBFR10DGUA\(_-\)002) and Noguera was supported by the Grant P202/10/1826 of the Czech Science Foundation.

References

  1. Aguzzoli S, Bova S (2010) The free \(n\)-generated BL-algebra. Ann Pure Appl Log 161(9):1144–1170CrossRefzbMATHMathSciNetGoogle Scholar
  2. Arieli O, Avron A, Zamansky A (2011) Ideal paraconsistent logics. Stud Log 99(1–3):31–60zbMATHMathSciNetGoogle Scholar
  3. Avron A, Zamansky A (2007) Non-deterministic multi-valued matrices for first-order logics of formal inconsistency. In: Proceedings of the 37th international symposium on multiple-valued logic, ISMVL. IEEE Press, Oslo, p 14Google Scholar
  4. Batens D (1980) Paraconsistent extensional propositional logics. Logique et Analyse 23:195–234zbMATHMathSciNetGoogle Scholar
  5. Besnard P, Hunter A (eds) (1998) Reasoning with actual and potential contradictions. Handbook of defeasible reasoning and uncertainty management systems, vol 2. Kluwer, DordrechtGoogle Scholar
  6. Blok WJ, Pigozzi DL (1989) Algebraizable logics, vol 77. Memoirs of the American Mathematical Society, ProvidenceGoogle Scholar
  7. Bou F, Esteva F, Font JM, Gil À, Godo L, Torrens A, Verdú V (2009) Logics preserving degrees of truth from varieties of residuated lattices. J Log Comput 19(6):1031–1069CrossRefzbMATHGoogle Scholar
  8. Carnielli W, Marcos J (1999) Limits for paraconsistent calculi. Notre Dame J Form Log 40:375–390CrossRefzbMATHMathSciNetGoogle Scholar
  9. Carnielli W, Coniglio ME, Marcos J (2007) Logics of formal inconsistency. In: Gabbay D, Guenthner F (eds) Handbook of philosophical logic, vol 14, 2nd edn. Springer, Berlin, pp 1–93CrossRefGoogle Scholar
  10. Castiglioni JL, Ertola RC (2014) Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation. Log J IGPL 22(2):268–273Google Scholar
  11. Cignoli R, D’Ottaviano IML, Mundici D (1999) Algebraic foundations of many-valued reasoning. Trends in logic, vol 7. Kluwer, DordrechtGoogle Scholar
  12. Cintula P, Noguera C (2011) A general framework for mathematical fuzzy logic. In: Cintula P, Hájek P, Noguera C (eds) Handbook of mathematical fuzzy logic-volume 1. Studies in logic, mathematical logic and foundations, vol 37. College Publications, London, pp 103–207Google Scholar
  13. Cintula P, Klement E-P, Mesiar R, Navara M (2010) Fuzzy logics with an additional involutive negation. Fuzzy Sets Syst 161(3):390–411CrossRefzbMATHMathSciNetGoogle Scholar
  14. Cintula P, Hájek P, Noguera C (eds) (2011) Handbook of mathematical fuzzy logic. Studies in logic, mathematical logic and foundations, vols 37, 38. College Publications, LondonGoogle Scholar
  15. Coniglio M, Esteva F, Godo L (2014) Logics of formal inconsistency arising from systems of fuzzy logic. Log J IGPL. doi: 10.1093/jigpal/jzu016
  16. da Costa N (1974) On the theory of inconsistent formal systems. Notre Dame J Form Log 15:497–510CrossRefzbMATHGoogle Scholar
  17. da Costa N, Alves E (1977) A semantical analysis of the calculi \(C_n\). Notre Dame J Form Log 18:621–630CrossRefzbMATHGoogle Scholar
  18. Dunn M (1976) Intuitive semantics for first degree entailment and ‘coupled trees’. Philos Stud 29:149–168CrossRefMathSciNetGoogle Scholar
  19. Dunn M, Restall G (2002) Relevance logic. In: Gabbay D, Guenthner F (eds) Handbook of philosophical logic, vol 6. Kluwer, Dordrecht, pp 1–136CrossRefGoogle Scholar
  20. Ertola RC (2009) On some operations using the min operator. In: Carnielli W, Coniglio ME, D’Ottaviano IML (eds) The many sides of logic. Studies in logic, vol 21. College Publications, London, pp 353–368Google Scholar
  21. Esteva F, Godo L (2001) Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst 124(3):271–288CrossRefzbMATHMathSciNetGoogle Scholar
  22. Esteva F, Godo L, Hájek P, Navara M (2000) Residuated fuzzy logics with an involutive negation. Arch Math Log 39(2):103–124CrossRefzbMATHGoogle Scholar
  23. Ferguson TM (2014) Extensions of priest-da costa logic. Stud Log 102:145–174CrossRefzbMATHMathSciNetGoogle Scholar
  24. Flaminio T, Marchioni E (2006) T-norm based logics with an independent involutive negation. Fuzzy Sets Syst 157(4):3125–3144CrossRefzbMATHMathSciNetGoogle Scholar
  25. Font JM (2009) Taking degrees of truth seriously. Stud Log 91(3):383–406CrossRefzbMATHMathSciNetGoogle Scholar
  26. Font JM, Gil A, Torrens A, Verdú V (2006) On the infinite-valued Łukasiewicz logic that preserves degrees of truth. Arch Math Log 45(7):839–868Google Scholar
  27. Goodman ND (1981) The logic of contradiction. Zeitschrift für Mathmatische Logik und Grundlagen der Mathematik 27:119–126Google Scholar
  28. Haniková Z (2011) Computational complexity of propositional fuzzy logics. In: Cintula P, Hájek P, Noguera C (eds) Handbook of mathematical fuzzy logic-vol 2. Studies in logic, mathematical logic and foundations, vol 38. College Publications, London, pp 793–851Google Scholar
  29. Horčík R, Noguera C, Petrík M (2007) On \(n\)-contractive fuzzy logics. Math Log Q 53(3):268–288CrossRefzbMATHMathSciNetGoogle Scholar
  30. Jansana R (2013) On deductive systems associated with equationally orderable quasivarieties. In: Proceedings of the 19th international conference on logic for programming, artificial intelligence and reasoning LPAR, Stellenbosch, South AfricaGoogle Scholar
  31. Jaśkowski S (1969) Propositional calculus for contradictory deductive systems. Stud Log 24(1):143–157CrossRefzbMATHGoogle Scholar
  32. Jenei S (2003) On the structure of rotation-invariant semigroups. Arch Math Log 42:489–514CrossRefzbMATHMathSciNetGoogle Scholar
  33. Jenei S, Montagna F (2002) A proof of standard completeness for Esteva and Godo’s logic MTL. Stud Log 70(2):183–192CrossRefzbMATHMathSciNetGoogle Scholar
  34. Johansson I (1936) Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio Mathematica 4(1):119–136Google Scholar
  35. Middelburg CA (2011) A survey of paraconsistent logics. arXiv:1103.4324v1 [cs.LO]
  36. Moisil GC (1942) Logique modale. Disquisitiones math. et phys., Bucarest, II, vol 1, pp 3–98 [Reprinted. In: Moisil GC (ed) (1972) Essais sur les logiques non chrysippiennes. Éditions de l’Académie de la République Socialiste de Roumanie, Bucarest]Google Scholar
  37. Noguera C (2007) Algebraic study of axiomatic extensions of triangular norm based fuzzy logics. Monografies de l’Institut d’Investigació en Intel\(\cdot \)ligència artificial, vol 27. CSIC, BarcelonaGoogle Scholar
  38. Noguera C, Esteva F, Gispert J (2005a) On some varieties of MTL-algebras. Log J IGPL 13(4):443–466Google Scholar
  39. Noguera C, Esteva F, Gispert J (2005b) Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear semihoops. Arch Math Log 44(7):869–886Google Scholar
  40. Priest G (1979) Logic of paradox. J Philos Log 8:219–241CrossRefzbMATHMathSciNetGoogle Scholar
  41. Priest G (2002a) Paraconsistent logic. In: Gabbay D, Guenthner F (eds) Handbook of philosophical logic, vol 6, 2nd edn. Kluwer, Dordrecht, pp 287–393Google Scholar
  42. Priest G (2002b) Fuzzy relevant logic. In: Carnielli WA et al (eds) Chapter 11 in paraconsistency: the logical way to the inconsistent. CRC Press, Boca RatonGoogle Scholar
  43. Priest G (2009) Dualising intuitionistic negation. Principia 13(2):165–184CrossRefGoogle Scholar
  44. Rasiowa H (1974) An algebraic approach to non-classical logics. North-Holland, AmsterdamzbMATHGoogle Scholar
  45. Rauszer C (1974) Semi-boolean algebras and their application to intuitionistic logic with dual operators. Fundamenta Mathematicae 85:219–249MathSciNetGoogle Scholar
  46. Skolem TA (1970) Untersuchungen über die Axiome des Klassenkalküls und über Produktations- und Summationsprobleme, welche gewisse Klassen von Aussagen betreffen. Skrifter utgit av Videnskabsselskapet i Kristiania 3, 1919 [Reprinted Skolem T. Selected works in logic. In: Fenstad JE (ed.) Universitetsforlaget]Google Scholar
  47. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Rodolfo Ertola
    • 1
  • Francesc Esteva
    • 2
  • Tommaso Flaminio
    • 3
  • Lluís Godo
    • 2
  • Carles Noguera
    • 4
    • 5
    Email author
  1. 1.State University of CampinasCampinasBrazil
  2. 2.Artificial Intelligence Research Institute-CSICBellaterraSpain
  3. 3.Dipartimento di Scienze Teoriche e ApplicateUniversità dell’InsubriaVareseItaly
  4. 4.Institute of Information Theory and Automation-ASČRPragueCzech Republic
  5. 5.Institute of Computer Science-ASČRPragueCzech Republic

Personalised recommendations