Skip to main content
Log in

Difference representation learning using stacked restricted Boltzmann machines for change detection in SAR images

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, we establish a deep neural network using stacked Restricted Boltzmann Machines (RBMs) to analyze the difference images and detect changes between multitemporal synthetic aperture radar (SAR) images. Given the two multitemporal images, a difference image which shows difference degrees between corresponding pixels is generated. Then, RBMs are stacked to form a deep hierarchical neural network to learn to analyze the difference image and recognize the changed pixels and unchanged pixels. The learning process includes unsupervised layer-wise feature learning and supervised fine-tuning of network parameters. Unsupervised learning aims to learn the representation of the difference image. Supervised fine-tuning aims to learn to classify the changed and unchanged pixels. The network can learn from datasets that have few labeled data. The labeled data can be selected from the results obtained by other methods because there is no prior information in image change detection. The system learns to detect the changes instead of recognizing the changes by fixed equations as in traditional change detection algorithms. We test the network with real synthetic aperture radar datasets and the labeled samples are extracted from the results obtained, respectively, by several methods, including a thresholding method, a level set method and two clustering methods. The results achieved by the trained network outperform that of other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Alain G, Bengio Y, Rifai S (2012) Regularized auto-encoders estimate local statistics. arXiv preprint arXiv:1211.4246. Accessed 19 Aug 2014

  • Arel I, Rose DC, Karnowski TP (2010) Deep machine learning—a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag 5(4):13–18

    Article  Google Scholar 

  • Bazi Y, Melgani F, Al-Sharari HD (2010) Unsupervised change detection in multispectral remotely sensed imagery with level set methods. IEEE Trans Geosci Remote Sens 48(8):3178–3187

    Article  Google Scholar 

  • Bengio Y (2009) Learning deep architectures for AI. Found trends Mach Learn 2(1):1–127

    Article  MATH  MathSciNet  Google Scholar 

  • Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  Google Scholar 

  • Bengio Y, Courville AC, Bergstra JS (2011) Unsupervised models of images by spike-and-slab RBMs. In: Proceedings of the 28th International Conference on Machine Learning (ICML), pp 1145–1152

  • Bordes A, Glorot X, Weston J, Bengio Y (2012) Joint learning of words and meaning representations for open-text semantic parsing. In: International Conference on Artificial Intelligence and Statistics, pp 127–135

  • Bovolo F, Bruzzone L (2005) A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Trans Geosci Remote Sens 43(12):2963–2972

    Article  Google Scholar 

  • Bruzzone L, Prieto DF (2002) An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans Image Process 11(4):452–466

  • Bujor F, Trouvé E, Valet L, Nicolas JM, Rudant JP (2004) Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images. IEEE Trans Geosci Remote Sens 42(10):2073–2084

    Article  Google Scholar 

  • Carneiro G, Nascimento J (2013) Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans Pattern Anal Mach Intell 35(11):2592–2607

    Article  Google Scholar 

  • Chatelain F, Tourneret JY, Inglada J (2008) Change detection in multisensor SAR images using bivariate Gamma distributions. IEEE Trans Image Process 17(3):249–258

    Article  MathSciNet  Google Scholar 

  • Chen B, Polatkan G, Sapiro G, Blei D, Dunson D, Carin L (2013) Deep learning with hierarchical convolutional factor analysis. IEEE Trans Pattern Anal Mach Intell 35(8):1887–1901

    Article  Google Scholar 

  • Ciresan D, Meier U, Masci J, Schmidhuber J (2011) A committee of neural networks for traffic sign classification. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp 1918–1921. IEEE

  • Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3642–3649. IEEE

  • Cireşan DC, Meier U, Gambardella LM, Schmidhuber J (2010) Deep, big, simple neural nets for handwritten digit recognition. Neural comput 22(12):3207–3220

    Article  Google Scholar 

  • Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 35(8):1915–1929

    Article  Google Scholar 

  • Gong M, Su L, Jia M, Chen W (2013) Fuzzy clustering with modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans, Fuzzy Syst

    Google Scholar 

  • Gong M, Zhou Z, Ma J (2012) Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans Image Process 21(4):2141–2151

    Article  MathSciNet  Google Scholar 

  • Goodfellow I, Courville A, Bengio Y (2012) Large-scale feature learning with spike-and-slab sparse coding. arXiv preprint arXiv:1206.6407. Accessed 27 June 2012

  • Goodfellow I, Courville A, Bengio Y (2013) Scaling up spike-and-slab models for unsupervised feature learning. IEEE Trans Pattern Anal Mach Intell 35(8):1902–1914

    Article  Google Scholar 

  • Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmidhuber J (2009) A novel connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern Anal Mach Intell 31(5):855–868

    Article  Google Scholar 

  • Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural comput 14(8):1771–1800

    Article  MATH  MathSciNet  Google Scholar 

  • Hinton GE (2010) A practical guide to training restricted Boltzmann machines. Momentum 9(1):926

    Google Scholar 

  • Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural comput 18(7):1527–1554

    Article  MATH  MathSciNet  Google Scholar 

  • Hutchinson B, Deng L, Yu D (2013) Tensor deep stacking networks. IEEE Trans Pattern Anal Mach Intell 35(8):1944–1957

    Article  Google Scholar 

  • Inglada J, Mercier G (2007) A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Trans Geosci Remote Sens 45(5):1432–1445

    Article  Google Scholar 

  • Ji S, Xu W, Yang M, Yu K (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231

    Article  Google Scholar 

  • Krinidis S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    Article  MathSciNet  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1106–1114

    Google Scholar 

  • Le QV, Ranzato M, Monga R, Devin M, Chen K, Corrado GS, Dean J, Ng AY (2011) Building high-level features using large scale unsupervised learning. arXiv preprint arXiv:1112.6209. Accessed 12 July 2012

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  • Lin M, Tang K, Yao X (2013) Dynamic sampling approach to training neural networks for multiclass imbalance classification. IEEE Trans Neural Netw Learn Syst 24(4):647–660. doi:10.1109/TNNLS.2012.2228231

    Article  Google Scholar 

  • Marchesi S, Bovolo F, Bruzzone L (2010) A context-sensitive technique robust to registration noise for change detection in VHR multispectral images. IEEE Trans Image Process 19(7):1877–1889

    Article  MathSciNet  Google Scholar 

  • Moser G, Serpico SB (2006) Generalized minimum-error thresholding for unsupervised change detection from SAR amplitude imagery. IEEE Trans Image Process 44(10):2972–2982

    MathSciNet  Google Scholar 

  • Nielsen AA (2007) The regularized iteratively reweighted MAD method for change detection in multi-and hyperspectral data. IEEE Trans Image Process 16(2):463–478

    Article  MathSciNet  Google Scholar 

  • Pajares G (2006) A hopfield neural network for image change detection. IEEE Trans Neural Netw 17(5):1250

  • Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14(3):294–307

    Article  MathSciNet  Google Scholar 

  • Ranzato M, Mnih V, Susskind J, Hinton G (2013) Modeling natural images using gated MRFs. IEEE Trans Pattern Anal Mach Intell 35(9):2206–2222

    Article  Google Scholar 

  • Robin A, Moisan L, Hegarat-Mascle L et al (2010) An a-contrario approach for subpixel change detection in satellite imagery. IEEE Trans Pattern Anal Mach Intell 32(11):1977–1993

    Article  Google Scholar 

  • Rosenfield GH, Fitzpatricklins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Remote Sens 52(2):223–227

    Google Scholar 

  • Salakhutdinov R, Tenenbaum J, Torralba A (2013) Learning with hierarchical-deep models. IEEE Trans Pattern Anal Mach Intell 35(8):1958–1971

    Article  Google Scholar 

  • Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imag 13(1):146–165

    Article  Google Scholar 

  • Shi L, Zhang L, Zhao L, Yang J, Li P, Zhang L (2013) The potential of linear discriminative laplacian eigenmaps dimensionality reduction in polarimetric sar classification for agricultural areas. ISPRS J Photogramm Remote Sens 86:124–135

    Article  Google Scholar 

  • Shin HC, Orton M, Collins D, Doran S, Leach M (2013) Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans Pattern Anal Mach Intell 35(8):1930–1943

    Article  Google Scholar 

  • Socher R, Pennington J, Huang EH, Ng AY, Manning CD (2011) Semi-supervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp 151–161. Association for Computational Linguistics.

  • Tang K, Lin M, Minku FL, Yao X (2009) Selective negative correlation learning approach to incremental learning. Neurocomputing 72:2796–2805

    Article  Google Scholar 

  • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 9999:3371–3408

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant nos. 61273317 and 61422209 ), the National Top Youth Talents Program of China, the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130203110011) and the Fundamental Research Fund for the Central Universities (Grant No. K5051202053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoguo Gong.

Additional information

Communicated by Y.-S. Ong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Gong, M., Zhao, J. et al. Difference representation learning using stacked restricted Boltzmann machines for change detection in SAR images. Soft Comput 20, 4645–4657 (2016). https://doi.org/10.1007/s00500-014-1460-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1460-0

Keywords

Navigation