Advertisement

Soft Computing

, Volume 18, Issue 4, pp 631–639 | Cite as

Particle swarm optimization algorithm driven by multichaotic number generator

  • Michal PluhacekEmail author
  • Roman Senkerik
  • Ivan Zelinka
Focus

Abstract

In this paper, the utilization of different chaotic systems as pseudo-random number generators (PRNGs) for velocity calculation in the PSO algorithm are proposed. Two chaos-based PRNGs are used alternately within one run of the PSO algorithm and dynamically switched over when a certain criterion is met. By using this unique technique, it is possible to improve the performance of PSO algorithm as it is demonstrated on different benchmark functions.

Keywords

Particle swarm Optimization Swarm intelligence  Chaos Evolutionary algorithms 

References

  1. Aydin I, Karakose M, Akin E (2010) Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Exp Syst Appl 37(7):5285–5294CrossRefGoogle Scholar
  2. Aziz-Alaoui MA, Robert C, Grebogi C (2001) Dynamics of a Henon-Lozi-type map. Chaos Solitons Fract 12(12):2323–2341CrossRefzbMATHMathSciNetGoogle Scholar
  3. Caponetto R, Fortuna L, Fazzino S, Xibilia MG (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput 7(3):289–304CrossRefGoogle Scholar
  4. Coelho LdS, Mariani VC (2009) A novel chaotic particle swarm optimization approach using Hnon map and implicit filtering local search for economic load dispatch. Chaos Solitons Fract 39(2):510–518CrossRefGoogle Scholar
  5. Coelho LdS, Mariani VC (2012) Firefly algorithm approach based on chaotic Tinkerbell map applied to multivariable PID controller tuning. Comput Mathem Appl 64(8):2371–2382zbMATHMathSciNetGoogle Scholar
  6. Davendra D, Zelinka I, Senkerik R, Bialic-Davendra M (2010) Chaos driven evolutionary algorithm for the traveling salesman problem. In: Davendra D (ed) Travel salesman problem. Theory and applications. InTech, LondonCrossRefGoogle Scholar
  7. Davendra D, Zelinka I, Senkerik R (2010) Chaos driven evolutionary algorithms for the task of PID control. Comput Mathem Appl 60(4):1088–1104zbMATHMathSciNetGoogle Scholar
  8. Davendra D, Bialic-Davendra M, Senkerik R (2013) Scheduling the lot-streaming flowshop scheduling problem with setup time with the chaos-induced enhanced differential evolution. In: 2013 IEEE Symposium on Differential Evolution (SDE), pp 119–126Google Scholar
  9. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. Proc Sixth Intern Sympos Micro Mach Human Sci 95:39–43CrossRefGoogle Scholar
  10. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlin Sci Numer Simul 18(1):89–98CrossRefzbMATHMathSciNetGoogle Scholar
  11. Hong W-C (2009) Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Ener Conv Manag 50(1):105–117CrossRefGoogle Scholar
  12. Ickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670CrossRefGoogle Scholar
  13. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE Intern Conf Neural Netw 4:1942–1948Google Scholar
  14. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. Proc 2002 Congr Evolut Comput CEC ’02 2:1671–1676.Google Scholar
  15. Kominkova Oplatkova Z, Senkerik R, Zelinka I, Pluhacek M (2013) Analytic programming in the task of evolutionary synthesis of a controller for high order oscillations stabilization of discrete chaotic systems. Comput Mathem Appl 66(2):177–189MathSciNetGoogle Scholar
  16. Lee JS, Chang KS (1996) Applications of chaos and fractals in process systems engineering. J Proc Cont 6(23):71–87CrossRefGoogle Scholar
  17. Liang JJ, Suganthan PN (2005) Dynamic multiswarm particle swarm optimizer (DMS-PSO)”, IEEE Swarm Intell Symp, pp 124–129Google Scholar
  18. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10(3):281–295CrossRefGoogle Scholar
  19. Liang W, Zhang L, Wang M (2011) The chaos differential evolution optimization algorithm and its application to support vector regression machine. J Softw 6(7):1297–1304CrossRefGoogle Scholar
  20. Lozi R (2012) Emergence of randomness from chaos. Intern J Bifurcat Chaos 22(02):1250021CrossRefMathSciNetGoogle Scholar
  21. Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) “Differential evolution algorithm with ensemble of parameters and mutation strategies” Applied Soft Computing, 11( 2): 1679–1696. doi: 10.1016/j.asoc.2010.04.024
  22. Narendra KP, Vinod P, Krishan KS (2010) A random bit generator using chaotic maps. Intern J Netw Sec 10(1):32–38Google Scholar
  23. Persohn KJ, Povinelli RJ (2012) Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos Solitons Fract 45(3):238–245CrossRefGoogle Scholar
  24. Pluhacek M, Senkerik R, Davendra D, Oplatkova ZK, Zelinka I (2013) On the behavior and performance of chaos driven PSO algorithm with inertia weight. Comput Mathem Appl 66(2):122–134Google Scholar
  25. Pluhacek M, Senkerik R, Davendra D, Zelinka I (2013a) Designing PID controller for DC motor by means of enhanced PSO algorithm with dissipative chaotic map. In: Snel V, Abraham A, Corchado ES (eds) Soft computing models in industrial and environmental applications. Advances in intelligent systems and computing, vol 188. Springer, Berlin, pp 475–483Google Scholar
  26. Pluhacek M, Senkerik R, Zelinka I, Davendra D (2013b) Chaos PSO algorithm driven alternately by two different chaotic maps - An initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp 2444–2449Google Scholar
  27. Pluhacek M, Senkerik R, Zelinka I (2014) Multiple choice strategy based PSO algorithm with chaotic decision making a preliminary study. In: Herrero, Baruque B, Klett F (eds) International Joint Conference SOCO13-CISIS13-ICEUTE13. Advances in intelligent systems and computing, vol 239. Springer International Publishing, pp 21–30Google Scholar
  28. Price KV, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Natural computing series. Springer, BerlinGoogle Scholar
  29. Senkerik R, Zelinka I, Davendra D, Oplatkova Z (2010) Utilization of SOMA and differential evolution for robust stabilization of chaotic Logistic equation. Comput Mathem Appl 60(4):1026–1037zbMATHMathSciNetGoogle Scholar
  30. Senkerik R, Oplatkova Z, Zelinka I, Davendra D (2013) Synthesis of feedback controller for three selected chaotic systems by means of evolutionary techniques: analytic programming. Mathem Comput Model 57(12):57–67CrossRefMathSciNetGoogle Scholar
  31. Senkerik R, Davendra D, Zelinka I, Pluhacek M, Oplatkova Z (2012a) An investigation on the differential evolution driven by selected discrete chaotic systems. In: 18th International Conference on Soft Computing, MENDEL 2012, pp 157–162Google Scholar
  32. Senkerik R, Davendra D, Zelinka I, Pluhacek M, Oplatkova Z (2012b) An Investigation on the Chaos driven differential evolution: an initial study. In: 5th International Conference on Bioinspired Optimization Methods and Their Applications, BIOMA 2012, pp 185–194Google Scholar
  33. Senkerik R, Pluhacek M, Oplatkova ZK, Davendra D, Zelinka I (2013) Investigation on the Differential Evolution driven by selected six chaotic systems in the task of reactor geometry optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp 3087–3094Google Scholar
  34. Senkerik R, Pluhacek M, Zelinka I, Oplatkova Z, Vala R, Jasek R (2014) Performance of chaos driven differential evolution on shifted benchmark functions set. In: Herrero, Baruque B, Klett F (eds) International Joint Conference SOCO13-CISIS13-ICEUTE13. Advances in intelligent systems and computing, vol 239. Springer International Publishing, pp 41–50Google Scholar
  35. Sprott JC (2003) Chaos and time-series analysis. Oxford University Press, New York Google Scholar
  36. Wang X-y, Qin X (2012) A new pseudo-random number generator based on CML and chaotic iteration. Nonlin Dyn 70(2):1589–1592Google Scholar
  37. Wu J, Lu J, Wang J (2009) Application of chaos and fractal models to water quality time series prediction. Environ Model Softw 24(5):632–636CrossRefGoogle Scholar
  38. Yang L, Wang X-Y (2012) Design of pseudo-random bit generator based on chaotic maps. Intern J Mod Phys B 26(32):1250208CrossRefGoogle Scholar
  39. Yuhui S, Eberhart R (1998) A modified particle swarm optimizer. IEEE World Congr Comput Intell 4–9:69–73Google Scholar
  40. Zelinka I (2004) SOMA self-organizing migrating algorithm. New optimization techniques in engineering. Studies in fuzziness and soft computing, vol 141. Springer, Berlin, pp 167–217Google Scholar
  41. Zelinka I (2009) Real-time deterministic chaos control by means of selected evolutionary techniques. Eng Appl Artif Intell 22(2):283–297CrossRefGoogle Scholar
  42. Zelinka I, Chadli M, Davendra D, Senkerik R, Pluhacek M, Lampinen J (2013a) Do evolutionary algorithms indeed require random numbers? Extended study. In: Zelinka I, Chen G, Rssler OE, Snasel V, Abraham A (eds) Nostradamus 2013: prediction, modeling and analysis of complex systems. Advances in intelligent systems and computing, vol 210. Springer International Publishing, pp 61–75Google Scholar
  43. Zelinka I, Senkerik R, Pluhacek M (2013b) Do evolutionary algorithms indeed require randomness? In: Evolutionary Computation (CEC), 2013 IEEE Congress on, pp 2283–2289Google Scholar
  44. Zhenyu G, Bo C, Min Y, Binggang C (2006) Self-adaptive chaos differential evolution. In: Jiao L, Wang L, Gao X-B, Liu J, Wu F (eds) Advances in natural computation. Lecture notes in computer science, vol 4221. Springer, Berlin, pp 972–975Google Scholar
  45. Zhi-Hui Z, Jun Z, Yun L, Yu-hui S (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evolut Comput 15(6):832–847CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations