Utilising the chaos-induced discrete self organising migrating algorithm to solve the lot-streaming flowshop scheduling problem with setup time


The Dissipative Lozi chaotic map is embedded in the discrete self organising migrating algorithm (DSOMA), as a pseudorandom generator. This novel chaotic based algorithm is applied to the constraint based lot-streaming flowshop scheduling problem. Two new and unique data sets generated using the Lozi and Delayed Logistic maps are used to compare the chaos embedded DSOMA and the generic DSOMA utilising the venerable Mersenne Twister. In total, 100 data sets were tested by these two algorithms, for the idling and the non-idling case. From the obtained results, the chaos variant algorithm is shown to significantly improve the performance of generic DSOMA.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. Alatas B, Akin E, Ozer A (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4):1715–1734

    Article  MATH  MathSciNet  Google Scholar 

  2. Caponetto R, Fortuna L, Fazzino S, Xibilia M (2003) Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans Evol Comput 7(3):289–304

    Article  Google Scholar 

  3. Chang JL, Gong DW, Ma XP (2007) A heuristic genetic algorithm for no-wait flowshop scheduling problem. J China Univ Min Technol 17(4):582–586

    Article  Google Scholar 

  4. Davendra D (2009) Chaotic attributes and permutative optimization. Ph.D. thesis, Tomas Bata University in Zlin, Zlin

  5. Davendra D (2012) Flowshop lot-streaming problem data sets. http://mrl.cs.vsb.cz/people/davendra/research.html

  6. Davendra D, Bialic-Davendra M (2013) Scheduling flow shops with blocking using a discrete self-organising migrating algorithm. Int J Prod Res 51(8):2200–2218. doi:10.1080/00207543.2012.711968

  7. Davendra D, Zelinka I, Senkerik R, Bialic-Davendra M (2010) Chaos driven evolutionary algorithm for the traveling salesman problem. In: Davendra D (ed) Traveling salesman problem, theory and applications. InTech Publishing, Croatia, pp 55–70

  8. Davendra D, Zelinka I, Bialic-Davendra M, Senkerik R, Jasek R (2013) Discrete self-organising migrating algorithm for flow-shop scheduling with no-wait makespan. Math Comput Model 57(12):100–110. doi:10.1016/j.mcm.2011.05.029

  9. Davendra D, Zelinka I, Senkerik R (2010) Chaos driven evolutionary algorithms for the task of pid control. Comput Math Appl 60(4):1088–1104

    Article  MATH  MathSciNet  Google Scholar 

  10. Hennon M (1979) A two-dimensional mapping with a strange attractor. Commun Math Phys 50:69–77

    Article  Google Scholar 

  11. Herring C, Julian P (1989) Random number generators are chaotic. ACM SIGPLAN 11:1–4

    Google Scholar 

  12. Hilborn R (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. OUP, Oxford

    Book  Google Scholar 

  13. Lehmer D (1951) Mathematical methods in large-scale computing units. Ann Comput Lab (Harvard University) 26:141–146

    Google Scholar 

  14. Lozi R (2008) New enhanced chaotic number generators. Indian J Ind Appl Math 1(1):1–23

    MathSciNet  Google Scholar 

  15. Lozi R (2009) Chaotic pseudo random number generators via ultra weak coupling of chaotic maps and double threshold sampling sequences. In: ICCSA 2009 the 3rd international conference on complex systems and applications. University of Le Havre, France, pp 1–5

  16. Lu Y, Zhou J, Qin H, Wang Y, Zhang Y (2011) Chaotic differential evolution methods for dynamic economic dispatch with valve-point effects. Eng Appl Artif Intell 24(2):378–387

    Google Scholar 

  17. Matsumoto M (2012) Mersenne twister webpage. http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/ARTICLES/earticles.html

  18. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Model Comput Simul 8(1):3–30

    Article  MATH  Google Scholar 

  19. Ozer A (2010) Cide: chaotically initialized differential evolution. Expert Syst Appl 37(6):4632–4641

    Article  MathSciNet  Google Scholar 

  20. Palmore J, McCauley J (1987) Shadowing by computable chaotic orbits. Phys Lett A 121:399

    Article  MathSciNet  Google Scholar 

  21. Pan QK, Fatih Tasgetiren M, Suganthan PN, Chua TJ (2011) A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Inf Sci 181(12):2455–2468. doi:10.1016/j.ins.2009.12.025

    Google Scholar 

  22. Pan QK, Ruiz R (2012) An estimation of distribution algorithm for lot-streaming flow shop problems with setup times. Omega 40(2):166–180

    Article  Google Scholar 

  23. Potts CN, Baker KR (1989) Flow shop scheduling with lot streaming. Oper Res Lett 8(6):297–303

    Article  MATH  MathSciNet  Google Scholar 

  24. Price K (1999) An introduction to differential evolution. In: Corne D, Dorigo M, Glover F (eds) New ideas in optimisation. McGraw Hill International, UK

    Google Scholar 

  25. Sarin SC, Jaiprakash P (2007) Flow shop lot streaming. Springer, Berlin

    Book  MATH  Google Scholar 

  26. Stojanovski T, Kocarev L (2001) Chaos-based random number generators part I: analysis. IEEE Trans Circuits Syst I Fundam Theory Appl 48(3):281–288

    Article  MATH  MathSciNet  Google Scholar 

  27. Yavuz M (2010) Fuzzy lead time management. In: Kahraman C, Yavuz M (eds) Production engineering and management under fuzziness, studies in fuzziness and soft computing, vol 252. Springer, Berlin/Heidelberg, pp 77–94

    Chapter  Google Scholar 

  28. Yuan X, Cao B, Yang B, Yuan Y (2008) Hydrothermal scheduling using chaotic hybrid differential evolution. Energy Convers Manag 49(12):3627–3633

    Article  Google Scholar 

  29. Zelinka I (2004) Soma—self organizing migrating algorithm. In: Onwubolu G, Babu B (eds) New optimization techniques in engineering. Springer-Verlag, Germany

  30. Zuo X, Fan Y (2006) A chaos search immune algorithm with its application to neuro-fuzzy controller design. Chaos Solitons Fractals 30(1):94–109

    Article  MATH  MathSciNet  Google Scholar 

Download references


Donald Davendra was supported by the Technology Agency of the Czech Republic under the Project TE01020197 and Michal Pluhacek was supported by the Internal Grant Agency of Tomas Bata University under the project No. IGA/FAI/2013/012.

Author information



Corresponding author

Correspondence to Donald Davendra.

Additional information

Communicated by I. Zelinka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davendra, D., Senkerik, R., Zelinka, I. et al. Utilising the chaos-induced discrete self organising migrating algorithm to solve the lot-streaming flowshop scheduling problem with setup time. Soft Comput 18, 669–681 (2014). https://doi.org/10.1007/s00500-014-1219-7

Download citation


  • Lot-streaming flowshop scheduling
  • Lozi map
  • Delayed Logistic map
  • Discrete Self Organising Migrating algorithm