Advertisement

Soft Computing

, Volume 18, Issue 6, pp 1225–1236 | Cite as

Asynchronous and implicitly parallel evolutionary computation models

  • Domagoj Jakobović
  • Marin Golub
  • Marko Čupić
Methodologies and Application

Abstract

This paper presents the design and the application of asynchronous models of parallel evolutionary algorithms. An overview of the existing parallel evolutionary algorithm (PEA) models and available implementations is given. We present new PEA models in the form of asynchronous algorithms and implicit parallelization, as well as experimental data on their efficiency. The paper also discusses the definition of speedup in PEAs and proposes an appropriate speedup measurement procedure. The described parallel EA algorithms are tested on problems with varying degrees of computational complexity. The results show good efficiency of asynchronous and implicit models compared to existing parallel algorithms.

Keywords

Evolutionary algorithms Parallelization Asynchronous algorithms 

References

  1. Acampora G, Gaeta M, Loia V (2011) Combining multi-agent paradigm and memetic computing for personalized and adaptive learning experiences. Comput Intell 27(2):141–165CrossRefMathSciNetGoogle Scholar
  2. Acampora G, Gaeta M, Loia V (2011) Hierarchical optimization of personalized experiences for e-learning systems through evolutionary models. Neural Comput. Appl. 20(5):641–657. doi: 10.1007/s00521-009-0273-z CrossRefGoogle Scholar
  3. Alba E (2002) Parallel evolutionary algorithms can achieve super-linear performance. Inf Process Lett 82:7–13CrossRefzbMATHMathSciNetGoogle Scholar
  4. Alba E, Luna F, Nebro AJ (2004) Parallel heterogeneous genetic algorithms for continuous optimization. Parallel Comput 14:2004MathSciNetGoogle Scholar
  5. Alba E, Nebro AJ, Troya JM (2002) Heterogeneous computing and parallel genetic algorithms. J Parallel Distrib Comput 62(9):1362–1385CrossRefzbMATHGoogle Scholar
  6. Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms. IEEE Trans Evol Comput 6:443–462CrossRefGoogle Scholar
  7. Alba E, Troya JM (2001) Analyzing synchronous and asynchronous parallel distributed genetic algorithms. Future Gener Comput Syst 17(4):451–465CrossRefzbMATHGoogle Scholar
  8. Borovska, P (2006).: Solving the travelling salesman problem in parallel by genetic algorithm on multicomputer cluster. In: international conference on computer systems and technologies – CompSysTech06, pp. 11–1-11-6.Google Scholar
  9. Cahon, S., Melab, N., Talbi, E.G (2004) Building with paradiseo reusable parallel and distributed evolutionary algorithms. Parallel Computing 30(5–6), 677–697. Parallel and nature-inspired computational paradigms and applications.Google Scholar
  10. Cantú-Paz, E (1998) Designing efficient master-slave parallel genetic algorithms. In: genetic programming 1998: proceedings of the third annual conference, Morgan Kaufmann, University of Wisconsin, USA, pp 455.Google Scholar
  11. Cantú-Paz, E (2007) Parameter setting in parallel genetic algorithms. In: Parameter setting in evolutionary algorithms, pp. 259–276.Google Scholar
  12. Caraffini F, Neri F, Iacca G, Mol A (2013) Parallel memetic structures. Inf Sci 227:60–82CrossRefMathSciNetGoogle Scholar
  13. Eklund, S.E (2004) A massively parallel architecture for distributed genetic algorithms. Parallel computing 30(5–6), 647–676. (Parallel and nature-inspired computational paradigms and applications).Google Scholar
  14. Gagne, C., Parizeau, M., Dubreuil, M (2003) Distributed beagle: an environment for parallel and distributed evolutionary computations. In: proceedings 17th annual international symposium of high performance computing systems and applications (HPCS).Google Scholar
  15. Golub, M (2001) Improving the efficiency of parallel genetic algorithms, Ph.D. thesis, Faculty of Electrical Engineering and Computing, Zagreb, Croatia.Google Scholar
  16. Golub, M., Budin, L (2000) An asynchronous model of global parallel genetic algorithms. In: C. Fyfe (ed.) Proceedings of 2nd ICSC Symposium on Engineering of Intertnational Systems, EIS2000, pp. 353–359. ICSC Academic Press, UK.Google Scholar
  17. Golub, M., Jakobovic, D., Budin, L (2001) Parallelization of elimination tournament selection without synchronization. In: proceedings of the 5th IEEE international conference on intelligent engineering systems INES 2001, pp. 85–89. Institute of Production Engineering, Helsinki, Finland.Google Scholar
  18. Golub, M., Posavec, A.B (1997) Using genetic algorithms for adapting approximation functions. In: proceedings of the international conference ITI ’97, University Computing Centre, University of Zagreb, Pula, pp. 451–456.Google Scholar
  19. He H, Skora O, Salagean A, Mkinen E (2007) Parallelisation of genetic algorithms for the 2-page crossing number problem. J Parallel Distrib Comput 67(2):229–241CrossRefzbMATHGoogle Scholar
  20. Jakobovic D, Budin L (2006) Dynamic scheduling with genetic programming. Lect Notes Comput Sci 3905:73CrossRefGoogle Scholar
  21. Jakobovic D, Jelenković L, Budin L (2007) Genetic programming heuristics for multiple machine scheduling. Lect Notes Comput Sci 4445:321–330CrossRefGoogle Scholar
  22. Jakobovic D, Marasovic K (2012) Evolving priority scheduling heuristics with genetic programming. Appl Soft Comput 12(9):2781–2789. doi: 10.1016/j.asoc.2012.03.065 CrossRefGoogle Scholar
  23. Melab, N., Cahon, S., Talbi, E.G (2006) Grid computing for parallel bioinspired algorithms. J Parallel Distrib Comput 66(8), 1052–1061 . (Parallel Bioinspired Algorithms)Google Scholar
  24. Morton, T.E., Pentico, D.W (1993) Heuristic Scheduling Systems. Wiley Inc., USA.Google Scholar
  25. Nowostawski, M., Poli, R (1999) Dynamic demes parallel genetic algorithm. In: KES’99, proceedings of the international conference, IEEE, pp. 93–98.Google Scholar
  26. Nowostawski, M., Poli, R (1999) Parallel genetic algorithm taxonomy. In: Proceedings of the third International Conference knowledge-based intell information engng systems KES’99, pp. 88–92. IEEE.Google Scholar
  27. Park HH, Grings A, dos Santos MV, Soares AS (2008) Parallel hybrid evolutionary computation: automatic tuning of parameters for parallel gene expression programming. Appl Math Comput 201(1–2):108–120CrossRefzbMATHMathSciNetGoogle Scholar
  28. Schneburg, E., Heinzmann, F., Feddersen, S (1995) Genetische Algorithmen und Evolutionsstrategien. 978–3893194933. Addison-Wesley, Verlag.Google Scholar
  29. Sullivan, K., Luke, S., Larock, C., Cier, S., Armentrout, S (2008) Opportunistic evolution: efficient evolutionary computation on large-scale computational grids. In: proceedings of the 2008 conference on genetic and evolutionary computation, GECCO ’08, ACM, New York, pp 2227–2232 . Google Scholar
  30. Weber M, Neri F, Tirronen V (2011) Shuffle or update parallel differential evolution for large-scale optimization. Soft Comput 15(11):2089–2107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Domagoj Jakobović
    • 1
  • Marin Golub
    • 1
  • Marko Čupić
    • 1
  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations