Skip to main content

Interval type-2 fuzzy kernel based support vector machine algorithm for scene classification of humanoid robot

Abstract

This paper proposed an Interval Type-2 Fuzzy Kernel based Support Vector Machine (IT2FK-SVM) for scene classification of humanoid robot. Type-2 fuzzy sets have been shown to be a more promising method to manifest the uncertainties. Kernel design is a key component for many kernel-based methods. By integrating the kernel design with type-2 fuzzy sets, a systematic design methodology of IT2FK-SVM classification for scene images is presented to improve robustness and selectivity in the humanoid robot vision, which involves feature extraction, dimensionality reduction and classifier learning. Firstly, scene images are represented as high dimensional vector extracted from intensity, edge and orientation feature maps by biological-vision feature extraction method. Furthermore, a novel three-domain Fuzzy Kernel-based Principal Component Analysis (3DFK-PCA) method is proposed to select the prominent variables from the high-dimensional scene image representation. Finally, an IT2FM SVM classifier is developed for the comprehensive learning of scene images in complex environment. Different noisy, different view angle, and variations in lighting condition can be taken as the uncertainties in scene images. Compare to the traditional SVM classifier with RBF kernel, MLP kernel, and the Weighted Kernel (WK), respectively, the proposed method performs much better than conventional WK method due to its integration of IT2FK, and WK method performs better than the single kernel methods (SVM classifier with RBF kernel or MLP kernel). IT2FK-SVM is able to deal with uncertainties when scene images are corrupted by various noises and captured by different view angles. The proposed IT2FK-SVM method yields over \(92~\% \) classification rates for all cases. Moreover, it even achieves \(98~\% \) classification rate on the newly built dataset with common light case.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ackerman C, Itti L (2005) Robot steering with spectral image information. IEEE Trans Robotics 21(2):247–251

    Google Scholar 

  2. Akakin HC, Gurcan MN (2012) Content-based microscopic image retrieval system for multi-image queries. IEEE Trans Inf Technol Biomed 16(4):758–769

    Google Scholar 

  3. Andreas B, Jamie AW, Hans G, Gerhard T (2011) Eye movement analysis for activity recognition using electrooculography. IEEE Trans Pattern Anal Mach Intell 33(4):741–753

    Article  Google Scholar 

  4. Bakhtari A, Benhabib B (2007) An active vision system for multitarget surveillance in dynamic environments. IEEE Trans Syst Man Cybern Part B Cybern 37(1):190–198

    Article  Google Scholar 

  5. Begum M, Karray F (2011) Visual attention for robotic cognition: a survey. IEEE Trans Auton Mental Dev 3(1):92–105

    Article  Google Scholar 

  6. Borgne HL, Anne GD, Noel EO (2007) Learning midlevel image features for natural scene and texture classification. IEEE Trans Circuits Syst Video Technol 17(3):286–297

    Google Scholar 

  7. Bovolo F, Bruzzone L, Carlin L (2010) A novel technique for subpixel image classification based on support vector machine. IEEE Trans Image Process 19(11):2983–2999

    Article  MathSciNet  Google Scholar 

  8. Castillo O (2012) Optimization of an interval type-2 fuzzy controller for an autonomous mobile robot using the particle swarm optimization algorithm. Stud Fuzziness Soft Comput 27(2):173–180

    Google Scholar 

  9. Castillo O, Melin P, Alanis A, Montiel O, Sepulveda R (2011) Optimization of interval type-2 fuzzy logic controllers using evolutionary algorithms. Soft Comput 15(6):1145–1160

    Article  Google Scholar 

  10. Castillo O, Melin P (2008) Type-2 fuzzy logic theory and applications. Springer, Berlin

  11. Cheng KH (2008) Hybrid learning-based neuro-fuzzy inference system: a new approach for system modeling. Int J Syst Sci 39(6):583–600

    Article  Google Scholar 

  12. Chesi G, Hung YS (2007) Global path-planning for constrained and optimal visual servoing. IEEE Trans Robotics 23(5):1050–1060

    Article  Google Scholar 

  13. Dong L, Izquierdo E (2007) A biologically inspired system for classification of natural images. IEEE Trans Circuits Syst Video Technol 17(5):590–603

    Google Scholar 

  14. Elattar EE, Goulermas J (2010) Electric load forecasting based on locally weighted support vector regression. IEEE Trans Syst Man Cybern Part C Appl Rev 40(4):438–447

    Google Scholar 

  15. Farinella GM, Battiato S (2011) Scene classification in compressed and constrained domain. IET Comput Vision 5(5):320–334

    Article  Google Scholar 

  16. Fazel Zarandi MH, Gamasaee R (2012) Type-2 fuzzy hybrid expert system for prediction of tardiness in scheduling of steel continuous casting process. Soft Comput 16(2):1–16

    Google Scholar 

  17. Gao D, Han S, Vasconcelos N (2009) Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Trans Pattern Anal Mach Intell 31(6):989–1004

    Article  Google Scholar 

  18. Gijsenij A, Gevers T (2011) Color constancy using natural image statistics and scene semantics. IEEE Trans Pattern Anal Mach Intell 33(4):687–697

    Article  Google Scholar 

  19. Gu L, Zhang Q (2007) Web shopping expert using new interval type-2 fuzzy reasoning. Soft Comput 11(8):741–751

    Article  Google Scholar 

  20. Hanmandlu M, Verma OP, Kumar NK, Kulkarni M (2009) A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Trans Instrum Measure 58(8):2867–2879

    Article  Google Scholar 

  21. Huang K, Tao D, Yuan Y, Li X, Tan T (2011) Biologically inspired features for scene classification in video surveillance. IEEE Trans Syst Man Cybern Part B Cybern 41(1):307–313

    Article  Google Scholar 

  22. Hulsman M, Reinders MJT, Ridder DD (2009) Evolutionary optimization of kernels weights improves protein complex comembership prediction. IEEE Trans Comput Biol Bioinformatics 6(3):427–437

    Google Scholar 

  23. Ishigaki T, Higuchi T, Watanabe K (2010) Fault detection of a vibration mechanism by spectrum classification with a divergence-based kernel. IET Signal Process 4(5):518–529

    Article  Google Scholar 

  24. Jan CG, Cor JV, Arnold WMS, Jan-Mark G (2010) Visual word ambiguity. IEEE Trans Pattern Anal Mach Intell 32(7):1271–1283

    Article  Google Scholar 

  25. Kim DS, Lee SW (2011) Prediction of axial DNBR distribution in a hot fuel rod using support vector regression models. IEEE Trans Nuclear Sci 58(4):2084–2090

    Article  Google Scholar 

  26. Lavee G, Rivlin E, Rudzsky M (2009) Understanding video events: a survey of methods for automatic Interpretation of semantic occurrences in video. IEEE Trans Syst Man Cybern Part C Appl Rev 39(5):489–504

    Google Scholar 

  27. Lecumberry F, Pardo A, Sapiro G (2010) Simultaneous object classification and segmentation with high-order multiple shape models. IEEE Trans Image Process 19(3):625–635

    Article  MathSciNet  Google Scholar 

  28. Lin WM, Wu CH, Lin CH, Cheng FS (2008) Detection and classification of multiple power quality disturbance with wavelet multiclass SVM. IEEE Trans Power Deliv 23(4):2573–3583

    Google Scholar 

  29. Lin KP, Chen MS (2011) On the design and analysis of the privacy preserving SVM classifier. IEEE Trans Knowl Data Eng 23(11):1704–1717

    Article  Google Scholar 

  30. Liu Hsin-Yu, Wang Wen-June, Wang Rong-Jyue, Tung Cheng-Wei, Wang Pei-Jui, Chang I-Ping (2012) Image recognition and force measurement application in the humanoid robot imitation. IEEE Trans Instrum Measure 61(1):149–161

    Google Scholar 

  31. Martinez R, Castillo O, Aguilar LT (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf Sci 179:2158–2174

    Article  MATH  Google Scholar 

  32. Mendel JM, John RI, Liu F (2009) Interval type-2 fuzzy logic systems made simple. IEEE Trans Fuzzy Syst 14(6):808–821

    Article  Google Scholar 

  33. Nedovic V, Smeulders AWM, Redert A, Geusebroek J-M (2010) Stages as models of scene geometry. IEEE Trans Pattern Anal Mach Intell 32(9):1673–1687

    Article  Google Scholar 

  34. Nguyen HN, Ohn SY, Park JY, Park KS (2005) Combined kernel function approach in SVM for diagnosis of cancer. Adv Nat Comput 36(10):1017–1026

    Article  Google Scholar 

  35. Opfer R (2006) Multiscale kernels. Adv Comput Math 25(4):357–380

    Article  MATH  MathSciNet  Google Scholar 

  36. Rasiwasia N, Vasconcelos N (2012) Holistic context models for visual recognition. IEEE Trans Pattern Anal Mach Intell 34(5):902–917

    Article  Google Scholar 

  37. Schölkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Google Scholar 

  38. Siagian C, Itti L (2007) Rapid biologically-inspired scene classification using features shared with visual attention. IEEE Trans Pattern Anal Mach Intell 29(2):300–312

    Article  Google Scholar 

  39. Song D, Tao D (2010) Biologically inspired feature manifold for scene classification. IEEE Trans Image Process 19(1):174–184

    Article  MathSciNet  Google Scholar 

  40. Tony T, Takashi M (2012) Topology dictionary for 3D video understanding. IEEE Trans Pattern Anal Mach Intell 34(8):1645–1657

    Article  Google Scholar 

  41. Tuia D, Camps-Valls G, Matasci G, Kanevski M (2010) Learning relevant image features with multiple kernel classification. IEEE Trans Geosci Remote Sens 48(10):3780–3791

    Google Scholar 

  42. Vapnik VN (1998) Statistical learning theory, New York

  43. Vasconcelos M, Vasconcelos N (2009) Natural image statistics and low-complexity feature selection. IEEE Trans Pattern Anal Mach Intell 31(2):228–243

    Article  MathSciNet  Google Scholar 

  44. Wu HJ, Su Y L, Lee SJ (2012) A fast method of computing the centroid of a type-2 fuzzy set. IEEE Trans Syst Man Cybern Part B Cybern 42(3):764–777

    Google Scholar 

  45. Wu HJ, Su YL, Lee SJ (2011) An enhanced type-reduction algorithm for type-2 fuzzy sets. IEEE Trans Fuzzy Syst 19(2):227–240

    Article  MathSciNet  Google Scholar 

  46. Yan YJ, Mauris G, Trouve E, Pinel V (2012) Fuzzy uncertainty representations of coseismic displacement measurements issued from SAR imagery. IEEE Trans Instrum Measure 61(5):1278–1286

    Google Scholar 

  47. Zhang L, Zhou W, Jiao L (2004) Wavelet support vector machine. IEEE Trans Syst Man Cybern Part B Cybern 34(1):34–39

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to appreciate the associated editors and the reviewers for the constructive comments and suggestions. This work was supported by the National Natural Science Foundation of China under Project 60974047 and U1134004, Natural Science Foundation of Guangdong Province S2012010008967 and Science Fund for Distinguished Young Scholars (S20120011437), 2011Zhujiang New Star, FOK Ying Tung Education Foundation of China 121061, the Ministry of education of New Century Excellent Talent, the 973 Program of China 2011CB013104, and by the Doctoral Fund of Ministry of Education of China under Grant 20124420130001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhi Liu.

Additional information

Communicated by H. Hagras.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Z., Xu, S., Zhang, Y. et al. Interval type-2 fuzzy kernel based support vector machine algorithm for scene classification of humanoid robot. Soft Comput 18, 589–606 (2014). https://doi.org/10.1007/s00500-013-1080-0

Download citation

Keywords

  • Humanoid robot
  • Type-2 fuzzy kernel
  • Three-domain fuzzy kernel
  • Support vector machine