Advertisement

Soft Computing

, Volume 16, Issue 11, pp 1893–1914 | Cite as

Automatic evolution of programs for procedural generation of terrains for video games

Accessibility and edge length constraints
  • Miguel Frade
  • Francisco Fernandez de Vega
  • Carlos Cotta
Original Paper

Abstract

Nowadays the video game industry is facing a big challenge to keep costs under control as games become bigger and more complex. Creation of game content, such as character models, maps, levels, textures, sound effects and so on, represent a big slice of total game production cost. Hence, the video game industry is increasingly turning to procedural content generation to amplify the cost-effectiveness of the efforts of video game designers. However, procedural methods for automated content generation are difficult to create and parametrize. In this work we study a genetic programming-based procedural content technique to generate procedural terrains that do not require parametrization, thus, allowing to save time and help reducing production costs. Generated procedural terrains present aesthetic appeal; however, unlike most techniques involving aesthetic, our approach does not require a human to perform the evaluation. Instead, the search is guided by the weighted sum of two morphological metrics: terrain accessibility and obstacle edge length. The combination of the two metrics allowed us to find a wide range of fit terrains that present more scattered obstacles in different locations than our previous approach with a single metric. Procedural terrains produced by this technique are already in use in a real video game.

Keywords

Terrains Procedural content generation Video games Aesthetic appeal 

Notes

Acknowledgments

We are deeply grateful to the Informatics and Communications Services of Computer Science department from University of Coimbra, Portugal, for giving us a time slot on 18 nodes of their MILIPEIA cluster. Also, a special word of appreciation to Patrcio Domingues that made the required arrangements that made possible our use of the cluster. Without their generosity our tests would not have been possible. The authors acknowledge the support of Spanish Ministry of Science and Innovation under project ANYSELF (TIN2011-28627-C04). The first and second authors are supported by University of Extremadura, project Grupo GEA. The second author is also supported by Gobierno de Extremadura, Consejeria de Economia-Comercio e Innovacion and FEDER, project GRU09105. The third author is supported by Spanish Ministry of Science and Innovation under projects TIN2008-05941, and by Junta de Andalucia under project TIC-6083.

References

  1. Ashlock D, Gent S, Bryden K (2008) Embryogenesis of artificial landscapes. In: Hingston PF, Barone LC, Michalewicz Z (eds) Design by evolution. Natural computing series. Springer, Berlin, pp 203–221. doi: 10.1007/978-3-540-74111-4_12
  2. Belhadj F (2007) Terrain modeling: a constrained fractal model. In: 5th International conference on CG, virtual reality, visualisation and interaction in Africa. ACM, Grahamstown, pp 197–204. doi: 10.1145/1294685.1294717
  3. Belhadj F, Audibert P (2005) Modeling landscapes with ridges and rivers: bottom up approach. In: GRAPHITE ’05: Proceedings of the 3rd international conference on computer graphics and interactive techniques in Australasia and South East Asia. ACM, New York, pp 447–450. doi: 10.1145/1101389.1101479
  4. Brosz J, Samavati FF, Sousa MC (2006) Terrain synthesis by-example. In: First international conference on computer graphics theory and applicationsGoogle Scholar
  5. Carpentier G, Bidarra R (2009) Interactive GPU-based procedural heightfield brushes. In: Proceedings of the 4th international conference on foundations of digital games. ACM, New York, pp 55–62Google Scholar
  6. Chiang M, Huang J, Tai W, Liu C, Chang C (2005) Terrain synthesis: an interactive approach. In: International workshop on advanced image techGoogle Scholar
  7. Doran J, Parberry I (2010) Controlled procedural terrain generation using software agents. IEEE Trans Comput Intell AI Games 2(2)Google Scholar
  8. Ebert D, Musgrave K, Peachey D, Perlin K, Worley S (2003) Texturing and modeling: a procedural approach, 3rd edn. Morgan KaufmannGoogle Scholar
  9. Edwards R (2006) The economics of game publishing. http://uk.games.ign.com/articles/708/708972p1.html. Accessed Sep 2011
  10. Forbus KD, Mahoney JV, Dill K (2002) How qualitative spatial reasoning can improve strategy game AIs. IEEE Intell Syst 17(4):25–30. doi: 10.1109/MIS.2002.1024748 CrossRefGoogle Scholar
  11. Frade M, de Vega FF, Cotta C (2008) Modelling video games’ landscapes by means of genetic terrain programming—a new approach for improving users’ experience. In: Giacobini M et al (eds) Applications of evolutionary computing. Lecture notes in computer science, vol 4974. Springer, Napoli, pp 485–490Google Scholar
  12. Frade M, de Vega FF, Cotta C (2009a) Adding zoom feature to terrain programmes. In: VI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB’09), Málaga, Spain, pp 293–300Google Scholar
  13. Frade M, de Vega FF, Cotta C (2009b) Breeding terrains with genetic terrain programming—the evolution of terrain generators. Int J Comput Games Technol. Article ID 125714:13. doi: 10.1155/2009/125714
  14. Frade M, de Vega FF, Cotta C (2010a) Evolution of artificial terrains for video games based on accessibility. In: Chio CD et al (eds) Applications of evolutionary computation. Lecture notes in computer science, vol 6024. Springer, Berlin, pp 90–99Google Scholar
  15. Frade M, de Vega FF, Cotta C (2010b) Evolution of artificial terrains for video games based on obstacles edge length. In: IEEE congress on evolutionary computation 2010, pp 1–8. doi: 10.1109/CEC.2010.5586032
  16. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice HallGoogle Scholar
  17. Goodchild M (1980) Fractals and the accuracy of geographical measures. Math Geol 12:85–98MathSciNetCrossRefGoogle Scholar
  18. Hastings EJ, Guha RK, Stanley KO (2009) Evolving content in the galactic arms race video game. Comput Intell 241–248Google Scholar
  19. Horn B (1981) Hill shading and the reflectance map. Proc IEEE 69(1):14–47CrossRefGoogle Scholar
  20. Iwahashi J, Pike RJ (2007) Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86(3–4):409–440. doi: 10.1016/j.geomorph.2006.09.012. http://www.sciencedirect.com/science/article/B6V93-4M6SB5Y-3/2/510ca957d542d84fba3e3af50968fdf8 Google Scholar
  21. Kamal KR, Uddin YS (2007) Parametrically controlled terrain generation. In: GRAPHITE ’07: Proceedings of the 5th international conference on computer graphics and interactive techniques in Australia and Southeast Asia. ACM, New York, pp 17–23. doi: 10.1145/1321261.1321264
  22. Koza JR (1992) Genetic programming. On the programming of computers by means of natural selection. MIT Press, CambridgeGoogle Scholar
  23. Lane B, Prusinkiewicz P (2002) Generating spatial distributions for multilevel models of plant communities. In: Proceedings of graphics interface 2002Google Scholar
  24. Li Q, Wang G, Zhou F, Tang X, Yang K (2006) Example-based realistic terrain generation. In: Pan Z, Cheok A, Haller M, Lau R, Saito H, Liang R (eds) Advances in artificial reality and tele-existence. Lecture notes in computer science, vol 4282. Springer, Berlin, pp 811–818. doi: 10.1007/11941354_84
  25. Mandelbrot BB (1983) The fractal geometry of nature. W. H. FreemanGoogle Scholar
  26. Mastin G, Watterberg P, Mareda J (1987) Fourier synthesis of ocean scenes. IEEE Comput Graph Appl 7:16–23. doi: 10.1109/MCG.1987.276961 CrossRefGoogle Scholar
  27. Miller GSP (1986) The definition and rendering of terrain maps. In: SIGGRAPH ’86: proceedings of the 13th annual conference on computer graphics and interactive techniques. ACM, New York, pp 39–48. doi: 10.1145/15922.15890
  28. Musgrave FK, Kolb CE, Mace RS (1989) The synthesis and rendering of eroded fractal terrains. In: SIGGRAPH ’89: proceedings of the 16th annual conference on computer graphics and interactive techniques. ACM, New York. doi: 10.1145/74333.74337
  29. Nelson MJ, Mateas M (2007) Towards automated game design. In: AI*IA ’07: Proceedings of the 10th congress of the Italian Association for Artificial Intelligence on AI*IA 2007. Springer, Berlin, pp 626–637. doi: 10.1007/978-3-540-74782-6_54
  30. Olsen J (2004) Realtime procedural terrain generation—realtime synthesis of eroded fractal terrain for use in computer games. Department of Mathematics and Computer Science (IMADA), University of Southern DenmarkGoogle Scholar
  31. Ong TJ, Saunders R, Keyser J, Leggett JJ (2005) Terrain generation using genetic algorithms. In: GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary computation. ACM, New York, pp 1463–1470. doi: 10.1145/1068009.1068241
  32. Pabst J, Jense H (1995) Dynamic terrain generation based on multifractal techniques. In: Proceedings of the international workshop on high performance computing for computer graphics and visualisation, SwanseaGoogle Scholar
  33. Peitgen HO, Jürgens H, Saupe D (2004) Chaos and fractals—new frontiers of science, 2nd edn. Springer, BerlinGoogle Scholar
  34. Perlin K (1985) An image synthesizer. SIGGRAPH Comput Graph 19(3):287–296. doi: 10.1145/325165.325247 CrossRefGoogle Scholar
  35. Perlin K (2002) Improving noise. In: SIGGRAPH ’02: Proceedings of the 29th annual conference on computer graphics and interactive techniques. ACM, New York, pp 681–682. doi: 10.1145/566570.566636
  36. Pi X, Song J, Zeng L, Li S (2006) Procedural terrain detail based on patch-LOD algorithm. In: Pan Z, Aylett R, Diener H, Jin X, Gbel S, Li L (eds) Technologies for e-learning and digital entertainment. Lecture notes in computer science, vol 3942. Springer, Berlin, pp 913–920. doi: 10.1007/11736639_111
  37. Poli R, Langdon WB, McPhee NF (2008) A field guide to genetic programming. Lulu.com and freely available. http://www.gp-field-guide.org.uk. With contributions by J. R. Koza.
  38. Pouderoux J, Gonzato JC, Tobor I, Guitton P (2004) Adaptive hierarchical RBF interpolation for creating smooth digital elevation models. In: GIS ’04: 12th annual ACM international workshop on geographic information systems. ACM, New York, pp 232–240. doi: 10.1145/1032222.1032256
  39. Prusinkiewicz P, Lindenmayer A (2004) The algorithmic beauty of plants. Springer, BerlinGoogle Scholar
  40. Remo C (2008) MIGS: far cry 2’s guay on the importance of procedural content. http://www.gamasutra.com/php-bin/news_index.php?story=21165. Accessed Sep 2011
  41. Rodrigues N, Frade M, de Vega FF (2010) Development of chapas an open source video game with genetic terrain programming. In: VII Congreso Espaol sobre Metaheursticas, Algoritmos Evolutivos y Bioinspirados (MAEB), Valencia, Spain, pp 1–8Google Scholar
  42. Sakas G (1993) Modeling and animating turbulent gaseous phenomena using spectral synthesis. Vis Comput: Int J Comput Graphics 9(4):200–212. doi: 10.1007/BF01901724 CrossRefGoogle Scholar
  43. Sampath D (2004) ABRCon, Adaptive oBject Re-CONfiguration: an approach to enhance, repeat playability of games and repeat watchability of movies. In: ACE ’04: Proceedings of the 2004 ACM SIGCHI international conference on advances in computer entertainment technology. ACM, New York, pp 313–316. doi: 10.1145/1067343.1067388
  44. Schneider J, Boldte T, Westermann R (2006) Real-time editing, synthesis, and rendering of infinite landscapes on GPUs. In: Vision, modeling, and visualization 2006: proceedings, November 22–24, 2006, Aachen, Germany. IOS Press, p 145Google Scholar
  45. Sims K (1991) Artificial evolution for computer graphics. In: SIGGRAPH ’91: Proceedings of the 18th annual conference on computer graphics and interactive techniques. ACM, New York, pp 319–328. doi: 10.1145/122718.122752
  46. Smelik RM, Tutenel T, de Kraker KJ, Bidarra R (2010) Declarative terrain modeling for military training games. Int J Comput Games Technol 11. doi: 10.1155/2010/360458. Article ID 360458
  47. Stachniak S, Stuerzlinger W (2005) An algorithm for automated fractal terrain deformation. Comput Graph Artif Intell 1:64–76Google Scholar
  48. Stanley K (2007) Compositional pattern producing networks: a novel abstraction of development. Genet Program Evol Mach 8:131–162. doi: 10.1007/s10710-007-9028-8 MathSciNetCrossRefGoogle Scholar
  49. Szeliski R, Terzopoulos D (1989) From splines to fractals. SIGGRAPH Comput Graph 23(3):51–60. doi: 10.1145/74334.74338 CrossRefGoogle Scholar
  50. Togelius J, Schmidhuber J (2008) An experiment in automatic game design. In: Proceedings of the IEEE symposium on computational intelligence and games (CIG), pp 111–118Google Scholar
  51. Togelius J, Preuss M, Beume N, Wessing S, Hagelback J, Yannakakis G (2010a) Multiobjective exploration of the starcraft map space. In: IEEE symposium on computational intelligence and games (CIG). IEEE, pp 265–272Google Scholar
  52. Togelius J, Preuss M, Yannakakis GN (2010b) Towards multiobjective procedural map generation. In: PCGames ’10: Proceedings of the 2010 workshop on procedural content generation in games. ACM, New York, pp 1–8. doi: 10.1145/1814256.1814259
  53. Togelius J, Yannakakis GN, Stanley KO, Browne C (2011) Search-based procedural content generation: a taxonomy and survey. IEEE Trans Comput Intell AI Games 3(3):172–186. doi: 10.1109/TCIAIG.2011.2148116 CrossRefGoogle Scholar
  54. Tu SC, Huang CY, Tai WK (2008) Terrain synthesis based on microscopic terrain feature. In: Pan Z, Zhang X, El Rhalibi A, Woo W, Li Y (eds) Technologies for e-learning and digital entertainment. Lecture notes in computer science, vol 5093. Springer, Berlin, pp 644–655. doi: 10.1007/978-3-540-69736-7_69
  55. Unemi T (1998) A design of multi-field user interface for simulated breeding. In: Proceedings of the third Asian fuzzy and intelligent system symposium, Masan, Korea, pp 489–494Google Scholar
  56. Vemuri B, Mandal C, Lai SH (1997) A fast gibbs sampler for synthesizing constrained fractals. IEEE Trans Visual Comput Graph 3(4):337–351. doi: 10.1109/2945.646237 CrossRefGoogle Scholar
  57. Voss R (1987) Fractals in nature: characterization, measurement, and simulation. In: SIGGRAPHGoogle Scholar
  58. Wells WD (2005) Generating enhanced natural environments and terrain for interactive combat simulations (genetics). In: VRST ’05: Proceedings of the ACM symposium on virtual reality software and technology. ACM, New York, pp 184–191. doi: 10.1145/1101616.1101655
  59. Zhou H, Sun J, Turk G, Rehg JM (2007) Terrain synthesis from digital elevation models. IEEE Trans Visual Comput Graph 13(4):834–848. doi: 10.1109/TVCG.2007.1027. Member-Turk, Greg and Member-Rehg, James M.Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Miguel Frade
    • 1
  • Francisco Fernandez de Vega
    • 2
  • Carlos Cotta
    • 3
  1. 1.School of Technology and ManagementPolytechnic Institute of LeiriaLeiriaPortugal
  2. 2.Centro Universitario de Mérida, University of ExtremaduraMéridaSpain
  3. 3.ETSI Informática (3.2.49)University of MálagaMálagaSpain

Personalised recommendations