Soft Computing

, 13:871 | Cite as

A case study of memetic algorithms for constraint optimization

  • Ender ÖzcanEmail author
  • Can Başaran


There is a variety of knapsack problems in the literature. Multidimensional 0–1 knapsack problem (MKP) is an NP-hard combinatorial optimization problem having many application areas. Many approaches have been proposed for solving this problem. In this paper, an empirical investigation of memetic algorithms (MAs) that hybridize genetic algorithms (GAs) with hill climbing for solving MKPs is provided. Two distinct sets of experiments are performed. During the initial experiments, MA parameters are tuned. GA and four MAs each using a different hill climbing method based on the same configuration are evaluated. In the second set of experiments, a self-adaptive (co-evolving) multimeme memetic algorithm (MMA) is compared to the best MA from the parameter tuning experiments. MMA utilizes the evolutionary process as a learning mechanism for choosing the appropriate hill climbing method to improve a candidate solution at a given time. Two well-known MKP benchmarks are used during the experiments.


Evolutionary algorithms Self-generation Knapsack problem Local search Adaptation 


  1. Alkan A, Ozcan E (2003) Memetic algorithms for timetabling. In: Proc of IEEE congress on evo comp, pp 1796–1802Google Scholar
  2. Burke E, Cowling P, Causmaecker PD, Berge GV (2001) A memetic approach to the nurse rostering problem. Appl Intell 15(3): 199–214zbMATHCrossRefGoogle Scholar
  3. Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyperheuristics: an emerging direction in modern search technology. Handbook of metaheuristics. International Series in OR & Management Science, vol 57. Kluwer, Dordrecht, pp 457–474Google Scholar
  4. Burke EK, Smith AJ (2000) Hybrid evolutionary techniques for the maintenance scheduling problem. IEEE Trans PS 15(1): 122–128Google Scholar
  5. Chu PC, Beasley JE (1998) A genetic algorithm for the multidimensional knapsack problem. J Heuristics 4(1): 63–86zbMATHCrossRefGoogle Scholar
  6. Cleary R, O’Neill M (2005) An attribute grammar decoder for the 01 multiconstrained knapsack problem. LNCS 3448: 34–45Google Scholar
  7. Cotta C, Troya JM (1998) A hybrid genetic algorithm for the 0-1 multiple knapsack problem. In: Artificial NN and GAs, vol 3. Springer, Heidelberg, pp 251–255Google Scholar
  8. Cowling P, Kendall G, Soubeiga E (2000) A hyperheuristic approach to scheduling a sales summit. In: Selected papers from 3rd int conf on PATAT. LNCS, vol 2079, pp 176–190Google Scholar
  9. Davis L (1991) Bit climbing, representational bias, and test suite design. In: Proc of the 4th int conf on GAs, pp 18–23Google Scholar
  10. Ersoy E, Özcan E, Uyar Ş (2007) Memetic algorithms and hyperhill-climbers. In: Proc of the 3rd multidisciplinary int conf on scheduling: theory and applications, pp 159–166Google Scholar
  11. Eshelman LJ (1991) The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Rawlins GJE(eds) Foundations of genetic algorithms. Morgan Kaufmann, Menlo Park, pp 265–283Google Scholar
  12. França PM, Mendes A, Moscato P (2001) A memetic algorithm for the total tardiness single machine scheduling problem. EJOR 132(1): 224–242zbMATHCrossRefGoogle Scholar
  13. Freville A (2004) The multidimensional 0–1 knapsack problem: an overview. EJOR 155(1): 1–21zbMATHCrossRefMathSciNetGoogle Scholar
  14. Freville A, Plateau G (1994) An efficient preprocessing procedure for the multidimensional 0-1 knapsack problem. Discrete Appl Math 49: 189–212zbMATHCrossRefMathSciNetGoogle Scholar
  15. Garey MR, Johnson DJ (1979) Computers and intractability: a guide to the theory of np-completeness. W.H. Freeman, San FranciscozbMATHGoogle Scholar
  16. Gavish B, Pirkul H (1985) Efficient algorithms for solving multiconstraint zero-one knapsack problems to optimality. Math Program 31: 78–105zbMATHCrossRefMathSciNetGoogle Scholar
  17. Glover F, Kochenberger GA (1996) Critical event tabu search for multidimensional knapsack problems. In: Osman IH, Kelly JP(eds) Meta-heuristics: theory and applications. Kluwer, Dordrecht, pp 407–427Google Scholar
  18. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, ReadingzbMATHGoogle Scholar
  19. Gottlieb J (1999) Evolutionary algorithms for constraint optimization problems. Dissertation, Institut für Informatik der Technischen Universitat ClausthalGoogle Scholar
  20. Hancock PJB (1999) Selection methods for evolutionary algorithms. In: Chambers L (ed) Practical handbook of genetic algorithms, New Frontiers, vol 2, Chap. 3, pp 67–93Google Scholar
  21. Hembecker F, Lopes HS, Godoy JrW (2007) Particle swarm optimization for the multidimensional knapsack problem. LNCS Adapt Nat Comput Algorithms 4431: 358–365CrossRefGoogle Scholar
  22. Holland JH (1975) Adaptation in natural and artificial systems. Univ. Mich. Press, Ann ArborGoogle Scholar
  23. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7: 204–223CrossRefGoogle Scholar
  24. Khuri S, Back T, Heitkotter J (1994) The zero/one multiple knapsack problem and genetic algorithms. In: Proceedings of the ACM symposium of applied comp, pp 188–193Google Scholar
  25. Krasnogor N (2002) Studies on the theory and design space of memetic algorithms. PhD Thesis, University of the West of England, BristolGoogle Scholar
  26. Krasnogor N, Smith JE (2001) Emergence of profitable search strategies based on a simple inheritance mechanism. In: Proc of the genetic and evolutionary comp. conf., pp 432–439Google Scholar
  27. Linqiang P, Martín-Vide C (2005) Solving multidimensional 0-1 knapsack problem by P systems with input and active membranes. J Par Dist Comput (65) 12: 1578–1584Google Scholar
  28. Magazine MJ, Oguz O (1984) A heuristic algorithm for the multidimensional zero-one knapsack problem. EJOR 16: 319–326zbMATHCrossRefMathSciNetGoogle Scholar
  29. Merz P, Freisleben B (2000) Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans Evol Comput 4(4): 337–352CrossRefGoogle Scholar
  30. Mitchell M, Forrest S (1997) Fitness landscapes: royal road functions. In: Baeck T, Fogel D, Michalewicz Z(eds) Handbook of evolutionary computation, vol B2.7. Institute of Physics Publishing, Philadelphia and Bristol UK, pp 1–25Google Scholar
  31. Moscato P, Norman MG (1992) A memetic approach for the traveling salesman problem implementation of a computational ecology for combinatorial optimization on message-passing systems. In: Valero M, Onate E, Jane M, Larriba JL, Suarez B (eds) Parallel computing and transputer applications, IOS Press, pp 177–186Google Scholar
  32. Neri F, Toivanen J, Cascella GL, Ong YS (2007) An adaptive multimeme algorithm for designing HIV multidrug therapies. IEEE-ACM Trans Comput Bio Bioinf 4(2): 264–278CrossRefGoogle Scholar
  33. Ochoa G (2006) Error thresholds in genetic algorithms. Evol Comp J 14(2): 157–182CrossRefMathSciNetGoogle Scholar
  34. Ong YS, Keane AJ (2004) Meta-lamarckian learning in memetic algorithms. IEEE Trans Evol Comp 8(2): 99–110CrossRefGoogle Scholar
  35. Ong YS, Lim MH, Ning Z, Wong KW (2006) Classification of adaptive memetic algorithms: a comparative study. IEEE Trans SMC BC 36(1): 141–152Google Scholar
  36. Ozcan E (2006) An empirical investigation on memes, self-generation and nurse rostering. In: Proc of the 6th int conf on the practice and theory of automated timetabling, pp 246–263Google Scholar
  37. Ozcan E (2005) Memetic Algorithms for Nurse Rostering, ISCIS 2005. LNCS, vol 3733, pp 482–492Google Scholar
  38. Ozcan E, Bilgin B, Korkmaz EE (2008) A comprehensive analysis of hyper-heuristics. Intell Data Anal 12(1): 3–23Google Scholar
  39. Ozcan E, Mohan CK (1997) Partial shape matching using genetic algorithms. Pattern Recogn Lett 18: 987–992CrossRefGoogle Scholar
  40. Ozcan E, Onbasioglu E (2007) Memetic algorithms for parallel code optimization. Int J Parallel Prog 35(1): 33–61CrossRefGoogle Scholar
  41. Pirkul H (1987) A heuristic solution procedure for the multiconstraint zero-one knapsack problem. Naval Res Logist 34: 161–172zbMATHCrossRefGoogle Scholar
  42. Pisinger D (1995) Algorithms for knapsack problems. PhD thesis, DIKU, University of Copenhagen, Report 95/1Google Scholar
  43. Reeves C (1993) Using genetic algorithms with small populations. In: Forrest S (ed) Proc of the 5th int conf on GAs, pp 92–99Google Scholar
  44. Radcliffe NJ, Surry PD (1994) Formal memetic algorithms. Evolutionary Computing: AISB Workshop. LNCS, vol 865. Springer, Heidelberg, pp 1–16Google Scholar
  45. Smith J, Fogarty TC (1997) Operator and parameter adaptation in genetic algorithms. Soft Comput 1(2): 81–87CrossRefGoogle Scholar
  46. Syswerda G (1989) Uniform crossover in genetic algorithms. In: Schaffer J(eds) Proc of the 3rd int conf on GAs. Morgan Kaufmann Publishers, Los Altos, pp 2–9Google Scholar
  47. Tang J, Lim MH, Ong YS (2007) Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput 11(9): 873–888CrossRefGoogle Scholar
  48. Tavares J, Francisco BP, Costa E (2006) The role of representation on the multidimensional knapsack problem by means of fitness landscape analysis. In: Proc. of the Congress of Evol Comp, pp 2307–2314Google Scholar
  49. Tavares J, Francisco BP, Costa E (2007) Multidimensional knapsack problem: the influence of representation. CISUC Technical Report TR 2007/003. ISSN 0874-338XGoogle Scholar
  50. Volgenant A, Zoon JA (1990) An improved heuristic for multidimensional 0-1 knapsack problems. JORS 41: 963–970zbMATHGoogle Scholar
  51. Wolpert D, MacReady WG (1997) No free lunch theorems for optimization. IEEE Trans Evo Comp 1(1): 67–82CrossRefGoogle Scholar
  52. Zhou Z, Ong YS, Lim MH, Lee BS (2007) Memetic algorithm using multi-surrogates for computationally expensive optimization problems. Soft Comput 11(10): 957–971CrossRefGoogle Scholar
  53. Zhu Z, Ong YS, Dash M (2007) Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans SBC BC 37(1): 70–76Google Scholar
  54. Zhu Z, Ong YS, Wong KW, Lim MH (2003) Choice of memes in memetic algorithm. In: Proceedings of the 2nd international conference on computational intelligence, robotics and autonomous systemsGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Computer EngineeringYeditepe UniversityKadıköy, IstanbulTurkey

Personalised recommendations