Soft Computing

, Volume 12, Issue 9, pp 835–856 | Cite as

On BCK algebras: Part II: New algebras. The ordinal sum (product) of two bounded BCK algebras

Original Paper

Abstract

Since all the algebras connected to logic have, more or less explicitly, an associated order relation, it follows, by duality principle, that they have two presentations, dual to each other. We classify these dual presentations in “left” and “right” ones and we consider that, when dealing with several algebras in the same research, it is useful to present them unitarily, either as “left” algebras or as “right” algebras. In some circumstances, this choice is essential, for instance if we want to build the ordinal sum (product) between a BL algebra and an MV algebra. We have chosen the “left” presentation and several algebras of logic have been redefined as particular cases of BCK algebras. We introduce several new properties of algebras of logic, besides those usually existing in the literature, which generate a more refined classification, depending on the properties satisfied. In this work (Parts I–V) we make an exhaustive study of these algebras—with two bounds and with one bound—and we present classes of finite examples, in bounded case. In Part II, we continue to present new properties, and consequently new algebras; among them, bounded α γ algebra is a common generalization of MTL algebra and divisible bounded residuated lattice (bounded commutative Rl-monoid). We introduce and study the ordinal sum (product) of two bounded BCK algebras.

Keywords

MV algebra Wajsberg algebra Generalized-MV algebra Generalized-Wajsberg algebra BCK algebra BCK(P) lattice Residuated lattice BL algebra Hájek(P) algebra Generalized-BL algebra Divisible BCK(P) lattice Heyting algebra Weak-BL algebra MTL algebra IMTL algebra WNM algebra NM algebra R0 algebra t-norm Pocrim 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agliano P, Ferreirim IMA, Montagna F Basic hoops: an algebraic study of continuous t-norms, submittedGoogle Scholar
  2. Andersen M and Feil T (1988). Lattice-ordered groups—an introduction. D. Reidel Publishing Company, Dordrecht Google Scholar
  3. Arai Y, Iséki K and Tanaka S (1966). Characterizations of BCI, BCK-algebras. Proc Jpn Acad 42: 105–107 MATHGoogle Scholar
  4. Balbes R and Dwinger P (1974). Distributive lattices. Univ. Missouri Press, Missouri MATHGoogle Scholar
  5. Birkhoff G (1967). Lattice theory, 3rd edn. American Mathematical Society, Providence Google Scholar
  6. Blok WJ and Raftery JG (1997). Varieties of commutative residuated integral pomonoids and their residuation subreducts. J Algebra 190: 280–328 CrossRefMathSciNetMATHGoogle Scholar
  7. Blok WJ, Ferreirim IMA (2007) On the algebra of hoops. Algebra universalis (to appear)Google Scholar
  8. Boicescu V, Filipoiu A, Georgescu G, Rudeanu S (1991) Lukasiewicz–Moisil algebras. Annals of discrete mathematics, vol 49. North-Holland, AmsterdamGoogle Scholar
  9. Burris S and Sankappanavar HP (1981). A course in universal algebra. Springer, Heidelberg MATHGoogle Scholar
  10. Chang CC (1958). Algebraic analysis of many valued logics. Trans Am Math Soc 88: 467–490 CrossRefMATHGoogle Scholar
  11. Cignoli R, D’Ottaviano IML and Mundici D (2000). Algebraic foundations of many-valued reasoning, vol 7. Kluwer, Dordrecht Google Scholar
  12. Cignoli R, Esteva F, Godo L, Torrens A (2007) Basic fuzzy Logic is the logic of continuous t-norms and their residua. Soft Comput (to appear)Google Scholar
  13. Cornish WH (1980). Lattice-ordered groups and BCK-algebras. Math Japonica 25(4): 471–476 MathSciNetMATHGoogle Scholar
  14. Cornish WH (1982). BCK-algebras with a supremum. Math Japonica 27(1): 63–73 MathSciNetMATHGoogle Scholar
  15. Dilworth RP (1939). Non-commutative residuated lattices. Trans Am Math Soc 46: 426–444 CrossRefMathSciNetMATHGoogle Scholar
  16. Di Nola A, Georgescu G and Iorgulescu A (2002). Pseudo-BL algebras: Part I. Multi Val Logic 8(5–6): 673–714 MathSciNetMATHGoogle Scholar
  17. Di Nola A, Georgescu G and Iorgulescu A (2002). Pseudo-BL algebras: Part II. Multi Val Logic 8(5–6): 717–750 MathSciNetMATHGoogle Scholar
  18. Dudek WA (1986). On some BCI-algebras with the condition (S). Math Japonica 31: 25–29 MathSciNetMATHGoogle Scholar
  19. Dvurečenskij A and Graziano MG (1999). On representations of commutative BCK-algebras. Demonstration Math 32: 227–246 MATHGoogle Scholar
  20. Dvurečenskij A and Pulmanová S (2000). New trends in quantum algebras. Kluwer, Dordrecht Google Scholar
  21. Esteva F and Godo L (2001). Monoidal t-norm based logic: towards a logic for left-continuous t-norms. Fuzzy Sets Syst 124(3): 271–288 CrossRefMathSciNetMATHGoogle Scholar
  22. Esteva F, Godo L, Hájek P, Montagna F, Hoops and fuzzy logic. submittedGoogle Scholar
  23. Flondor P, Georgescu G and Iorgulescu A (2001). Pseudo-t-norms and pseudo-BL algebras. Soft Comput 5(5): 355–371 CrossRefMATHGoogle Scholar
  24. Fodor JC (1995). Contrapositive symmetry of fuzzy implications. Fuzzy Sets Syst 69: 141–156 CrossRefMathSciNetMATHGoogle Scholar
  25. Font JM, Rodriguez AJ and Torrens A (1984). Wajsberg algebras. Stochastica VIII(1): 5–31 MathSciNetGoogle Scholar
  26. Georgescu G, Iorgulescu A, Pseudo-BL algebras: a noncommutative extension of BL algebras. Abstracts of the fifth international conference FSTA 2000, Slovakia, February 2000, pp 90–92Google Scholar
  27. Gottwald S (1984) T-Normen und φ-Operatoren als Wahrheitswertfunktionen mehrwertiger Junktoren. In: Wechsung G (ed) Frege Conference 1984, Proc. Intern. Conf. Schwerin Sept 10–14, Math. Research, vol 20. Akademie, Berlin, pp 121–128Google Scholar
  28. Gottwald S (1986). Fuzzy set theory with t-norms and φ-operators. In: Di Nola, A, Ventre, AGS (eds) The mathematics of fuzzy systems, Interdisciplinary Systems Res., vol 88., pp 143–195. TÜV Rheinland, Köln Google Scholar
  29. Gottwald S (1993). Fuzzy sets and fuzzy logic. Wiesbaden, Braunschweig MATHGoogle Scholar
  30. Gottwald S (2001) A treatise on many-valued logics. Studies in logic and computation, vol 9. Research Studies Press, BaldockGoogle Scholar
  31. Grigolia R (1977). Algebraic analysis of Lukasiewicz–Tarski’s n-valued logical systems. In: Wójcicki, R and Malinowski, G (eds) Selected Papers on Lukasiewicz Sentential Calculi., pp 81–92. Polish Acad. of Sciences, Ossolineum, Wroclaw Google Scholar
  32. Grzaślewicz A (1980). On some problem on BCK-algebras. Math Japonica 25(4): 497–500 MATHGoogle Scholar
  33. Hájek P (1996) Metamathematics of fuzzy logic. Inst of Comp Science, Academy of Science of Czech Rep., Technical report, vol 682Google Scholar
  34. Hájek P (1998). Metamathematics of fuzzy logic. Kluwer, Dordrecht MATHGoogle Scholar
  35. Hájek P (1998). Basic fuzzy logic and BL-algebras. Soft comput 2: 124–128 Google Scholar
  36. Hájek P, Godo L and Esteva F (1996). A complete many-valued logic with product-conjunction. Arch Math Logic 35: 191–208 MathSciNetMATHGoogle Scholar
  37. Horn A (1969). Logic with truth values in a linearly ordered Heyting algebra. J Symbolic Logic 34: 395–408 CrossRefMathSciNetMATHGoogle Scholar
  38. Höhle U (1995). Commutative, residuated l-monoids. In: Höhle, U and Klement, EP (eds) Non-classical logics and their applications to fuzzy subsets., pp 53–106. Kluwer, Dordrecht Google Scholar
  39. Idziak PM (1984). Lattice operations in BCK-algebras. Math Japonica 29: 839–846 MathSciNetMATHGoogle Scholar
  40. Idziak PM (1984). Filters and congruence relations in BCK—semilattices. Math Japonica 29(6): 975–980 MathSciNetMATHGoogle Scholar
  41. Imai Y and Iséki K (1966). On axiom systems of propositional calculi XIV, Proc. Japan Acad 42: 19–22 MATHGoogle Scholar
  42. Iorgulescu A (2004). Iséki algebras. Connection with BL algebras. Soft Comput 8(7): 449–463 CrossRefMATHGoogle Scholar
  43. Iorgulescu A (2003). Some direct ascendents of Wajsberg and MV algebras. Sci Math Japonicae 57(3): 583–647 MathSciNetMATHGoogle Scholar
  44. Iorgulescu A (2004a) Classes of BCK algebras—Part I, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 1/2004, 1–33Google Scholar
  45. Iorgulescu A (2004b) Classes of BCK algebras—Part II, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 2/2004, 1–27Google Scholar
  46. Iorgulescu A (2004c) Classes of BCK algebras—Part III, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 3/2004, 1–37Google Scholar
  47. Iorgulescu A (2004d) Classes of BCK algebras—Part IV, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 4/2004, 1–25Google Scholar
  48. Iorgulescu A (2004e) Classes of BCK algebras—Part V, Preprint Series of the Institute of Mathematics of the Romanian Academy, preprint nr. 5/2004, 1–22Google Scholar
  49. Iorgulescu A (2007) On BCK algebras—Part I: An attempt to treat unitarily the algebras of logic. New algebras (submitted)Google Scholar
  50. Iséki K (1966). An algebra related with a propositional calculus. Proc Japan Acad 42: 26–29 MathSciNetMATHCrossRefGoogle Scholar
  51. Iséki K (1977). A special class of BCK-algebras. Math Seminar Notes Kobe University 5: 191–198 MATHGoogle Scholar
  52. Iséki K (1977). On a positive implicative algebra with condition (S). Math Seminar Notes Kobe University 5: 227–232 MATHGoogle Scholar
  53. Iséki K (1979). BCK-Algebras with condition (S). Math Japonica 24(1): 107–119 MATHGoogle Scholar
  54. Iséki K (1980). On BCK-algebras with condition (S). Math Japonica 24(6): 625–626 MATHGoogle Scholar
  55. Iséki K (1980). On BCI-algebras with condition (S). Math Semin Notes 8: 171–172 MATHGoogle Scholar
  56. Iséki K and Tanaka S (1978). An introduction to the theory of BCK- algebras. Math Japonica 23(1): 1–26 MATHGoogle Scholar
  57. Kalman J (1958). Lattices with involution. Trans Am Math Soc 87: 485–491 CrossRefMathSciNetMATHGoogle Scholar
  58. Klement EP, Mesiar R and Pap E (2000). Triangular norms. Kluwer, Dordrecht MATHGoogle Scholar
  59. Kondo M and Dudek WA (2004). Characterization theorem of lattice implication algebras. Far East J Math Sci 13: 325–342 MathSciNetMATHGoogle Scholar
  60. Kowalski T, Ono H (2001)Residuated lattices: an algebraic glimpse at logics without contraction. MonographGoogle Scholar
  61. Krull W (1924) Axiomatische Begründung der allgemeinen Idealtheorie, Sitzungsberichte der physikalisch medizinischen Societät der Erlangen 56:47–63Google Scholar
  62. Lin Y-H (2002) Some properties on commutative BCK-algebras. Sci Math Japonicae 55(1):129–133, :e5, 235–239Google Scholar
  63. Mangani P (1973). On certain algebras related to many-valued logics (Italian). Boll Un Mat Ital 8(4): 68–78 MathSciNetMATHGoogle Scholar
  64. Moisil GrC (1972) Essais sur les logiques non-chryssippiennes. Bucarest,Google Scholar
  65. Moisil GrC (1935). Recherches sur l’algébre de la logique. Ann Sci Univ Jassy 22: 1–117 Google Scholar
  66. Monteiro L (1970). Les algébres de Heyting et de Łukasiewicz trivalentes. Notre Dame J Formal Logic 11: 453–466 CrossRefMathSciNetMATHGoogle Scholar
  67. Mundici D (1986). MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math Japonica 31(6): 889–894 MathSciNetMATHGoogle Scholar
  68. Mundici D (1986). Interpretation of AF C *-algebras in Lukasiewicz sentential calculus. J Funct Anal 65: 15–63 CrossRefMathSciNetMATHGoogle Scholar
  69. Okada M and Terui K (1999). The finite model property for various fragments of intuitionistic logic. J Symbolic Logic 64: 790–802 CrossRefMathSciNetMATHGoogle Scholar
  70. Ono H and Komori Y (1985). Logics without the contraction rule. J Symbolic Logic 50: 169–201 CrossRefMathSciNetMATHGoogle Scholar
  71. Pavelka J (1979). On fuzzy logic II. Enriched residuated lattices and semantics of propositional calculi. Zeitschrift Math Logik Grundlagen Math 25: 119–134 CrossRefMathSciNetMATHGoogle Scholar
  72. Pei D (2003). On equivalent forms of fuzzy logic systems NM and IMTL. Fuzzy Sets Syst 138: 187–195 CrossRefMathSciNetMATHGoogle Scholar
  73. Prior AN (1962). Formal logic, 2nd edn. Clarendon Press, Oxford Google Scholar
  74. Romanowska A and Traczyk T (1980). On commutative BCK-algebras. Math Japonica 25(5): 567–583 MathSciNetMATHGoogle Scholar
  75. Traczyk T (1979). On the variety of bounded commutative BCK- algebras. Math Japonica 24(3): 283–292 MathSciNetMATHGoogle Scholar
  76. Turunen E (1999). BL-algebras of basic fuzzy logic. Mathware Soft Comput 6: 49–61 MathSciNetMATHGoogle Scholar
  77. Turunen E (1999). Mathematics behind fuzzy logic. Physica, Heidelberg MATHGoogle Scholar
  78. Van Alten CJ and Raftery JG (1999). On the lattice of varieties of residuation algebras. Algebra universalis 41: 283–315 CrossRefMathSciNetMATHGoogle Scholar
  79. Wajsberg M (1935). Beiträge zum Mataaussagenkalkül. Monat Math Phys 42: 240 MathSciNetGoogle Scholar
  80. Ward M (1940). Residuated distributive lattices. Duke Math J 6: 641–651 CrossRefMathSciNetGoogle Scholar
  81. Ward M and Dilworth RP (1939). Residuated lattices. Trans Am Math Soc 45: 335–354 CrossRefMathSciNetMATHGoogle Scholar
  82. Wang GJ (1997). A formal deductive system for fuzzy propositional calculus. Chin Sci Bull 42: 1521–1526 MATHCrossRefGoogle Scholar
  83. Wronski A (1985). An algebraic motivation for BCK-algebras. Math Japonica 30(2): 187–193 MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Computer ScienceAcademy of Economic StudiesBucharestRomania

Personalised recommendations