Skip to main content
Log in

Expert guided integration of induced knowledge into a fuzzy knowledge base

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper proposes a method for building accurate and interpretable systems by integrating expert and induced knowledge into a single knowledge base. To favor the cooperation between expert knowledge and data, the induction process is run under severe constraints to ensure the fully control of the expert. The procedure is made up of two hierarchical steps. Firstly, a common fuzzy input space is designed according to both the data and expert knowledge. The compatibility of the two types of partitions, expert and induced, is checked according to three criteria : range, granularity and semantic interpretation. Secondly, expert rules and induced rules are generated according to the previous common fuzzy input space. Then, induced and expert rules have to be merged into a new rule base. Thanks to the common universe resulting from the first step, rule comparison can be made at the linguistic level only. The possible conflict situations are managed and the most important rule base features, consistency, redundancy and completeness, are studied. The first step is thoroughly described in this paper, while the second is only introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezdek JC (1981) Pattern recognition with fuzzy objective functions algorithms. Plenum Press, New York

    Google Scholar 

  2. Bonissone PP (1997) Soft computing: the convergence of emerging reasoning technologies. Soft Comput 1:6–18

    Google Scholar 

  3. Bonissone PP, Khedkar PS, Chen Y (1996) Genetic algorithms for automated tuning of fuzzy controllers: a transportation application. In: Proceedings of 5th IEEE international conference on fuzzy systems (FUZZ-IEEE’96), New Orleans, USA, pp 674–680

  4. Brown M, Harris C (1994) Neurofuzzy adaptive modelling and control. Prentice Hall, Englewood Cliffs

    Google Scholar 

  5. Casillas J, Cordón O, Herrera F, Magdalena L (2003) Interpretability issues in fuzzy modeling, Studies in Fuzziness and Soft Computing, vol 128. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Chen M-Y (2002) Establishing interpretable fuzzy models from numerica data. In: Proceedings of the 4th world congress on intelligent control and automation IEEE, pp 1857–1861

  7. Cordón O, Herrera F (1997) A three-stage evolutionary process for learning descriptive and approximate fuzzy logic controller knowledge bases from examples. Int J Approx Reason 17(4):369–407

    Article  MATH  Google Scholar 

  8. Cordón O, Herrera F, Magdalena L, Villar P (2001) A genetic learning process for the scaling factors, granularity and contexts of the fuzzy rule-based system data base. Inf Sci 136(1-4):85–107

    Article  MATH  Google Scholar 

  9. Cornelissen A, van der Bergand WJ, Koops J, Kaymak U (2003) Elicitation of expert knowledge for fuzzy evaluation of agricultural production systems. Agric Ecosyst Environ 95:1–18

    Article  Google Scholar 

  10. Valente de Oliveira J (1999) Semantic constraints for membership functions optimization. IEEE Trans Syst Man Cybern A, 29(1):128–138

    Article  Google Scholar 

  11. Dunn JC (1973) A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J Cybern 3(3): 32–57

    Article  MathSciNet  MATH  Google Scholar 

  12. Espinosa J, Vandewalle J (2000) Constructing fuzzy models with linguistic integrity from numerical data-afreli algorithm. IEEE Trans Fuzzy Syst 8(5):591–600

    Article  Google Scholar 

  13. Fukuyama Y, Sugeno M (1989) A new method of choosing the number of clusters for fuzzy c-means method. In: Proceedings of the 5th Fuzzy system symposium (in Japanese), pp 247–250

  14. Glorennec PY (1996) Constrained optimization of FIS using an evolutionary method. In: Herrera F, Verdegay JL (eds), Genetic algorithms and soft computing. Studies in fuzziness and soft computing, vol 8. Physica-Verlag, pp 349–368

  15. Glorennec P-Y (1999) Algorithmes d’apprentissage pour systèmes d’inférence floue. Editions Hermès, Paris

    MATH  Google Scholar 

  16. Guillaume S (2001) Designing fuzzy inference systems from data: an interpretability-oriented review. IEEE Trans Fuzzy Syst 9(3):426–443

    Article  MathSciNet  Google Scholar 

  17. Guillaume S, Charnomordic B (2003) A new method for inducing a set of interpretable fuzzy partitions and fuzzy inference systems from data, Volume 128 of studies in fuzziness and soft computing of (Casillas, Cordon, Herrera & Magdelena, 2003) pp 148–175

  18. Guillaume S, Charnomordic B (2004) Generating an interpretable family of fuzzy partitions. IEEE Trans Fuzzy Syst (in Press)

  19. Guillaume S, Charnomordic B, Lablée J-L (2002) Fispro: an open source portable software for fuzzy inference systems. http://www.inra.fr/bia/M/fispro.

  20. Guillaume S, Magdalena L (2003) Typologie des conflits dans les systèmes de mamdani. In: LFA’03 Cépaduès Editions, France pp 73–80

  21. Guillaume S, Magdalena L, Sotelo MA, Bergasa LM, Flores R, Ocaña M (2003) Expert and induced knowledge for intelligent motion analysis of ground robots. In: EUSFLAT’03, Zittau, Germany

  22. Homaifar A, McCormick E (1995) Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans Fuzzy Syst 3(2):129–139

    Article  Google Scholar 

  23. Ishibuchi H, Murata T (1996) A genetic-algorithm-based fuzzy partition method for pattern classification problems in Genetic algorithms and soft computing, studies in fuzziness and soft computing, vol 8. Physica-Verlag, pp 555–578

  24. Jiménez F, Gómez-Skarmeta A, Roubos H, Babuška R (2001) multi-objective evolutionary algorithm for fuzzy modeling. In: Proceedings of the 9th IFSA world congress and the 20th NAFIPS international conference, Vancouver, Canada, pp 1222–1228

  25. Jin Y, von Seelen W, Sendhoff B (1999) On generating FC 3 fuzzy rule systems from data using evolutionary strategies. IEEE Trans Syst Man Cybern B Cybern 29(6):829–845

    Article  Google Scholar 

  26. Karr C (1991) Genetic algorithms for fuzzy controllers. AI Expert 6(2):26–33

    Google Scholar 

  27. Krishnakumar K, Satyadas A (1995) GA-optimized fuzzy controller for spacecraft attitude control. In: Periaux J, Winter G, Galán M, Cuesta P (eds). Genetic algorithms in engineering and computer science. Wiley, London, pp. 305–320

    Google Scholar 

  28. Larichev OI (2002) Close imitation of expert knowledge: the problem and methods. Int J Inf Technol Decis Mak 1(1):27–42

    Article  Google Scholar 

  29. Liao T, Celmins A, Hammell II RJ (2003) A fuzzy c-means variant for the generation of fuzzy term sets. Fuzzy Sets Syst 135:241–257

    Article  MathSciNet  MATH  Google Scholar 

  30. López S, Magdalena L, Velasco JR (1999) Genetic fuzzy c-means algorithm for the automatic generation of fuzzy partitions. In: Bouchon-Meunier B, Yager R, Zadeh L (eds). Information, uncertainty, fusion. Kluwer Scientific, Norwell, pp. 407–418

    Google Scholar 

  31. Magdalena L, Monasterio-Huelin F (1997) A fuzzy logic controller with learning through the evolution of its knowledge base. Int J Approx Reason 16(3):3335–358

    Article  Google Scholar 

  32. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Stud 7:1–13

    Article  MATH  Google Scholar 

  33. Medasani S, Kim J, Krishnapuram R (1998) An overview of membership function generation techniques for pattern recognition. Int J Approx Reason 19:391–417

    Article  MathSciNet  MATH  Google Scholar 

  34. Nauck D, Kruse R (1999) Neuro-fuzzy systems for function approximaton. Fuzzy Sets Syst 101(2):261–271

    Article  MathSciNet  MATH  Google Scholar 

  35. Pedrycz W (1993) Fuzzy control and fuzzy systems, studies in fuzziness, 2nd edn. Research Studies Press Ltd

  36. Pedrycz W (1994) Why triangular membership functions? Fuzzy sets Syst 64(1):21–30

    Article  MathSciNet  Google Scholar 

  37. Pedrycz W (2001) Fuzzy equalization in the construction of fuzzy sets. Fuzzy Sets Syst 119(2):329–335

    Article  MathSciNet  MATH  Google Scholar 

  38. Pedrycz W, Vukovich G (2002) On elicitation of membership functions. IEEE Trans Syst Man Cybern A. Syst Hum 32(6):761–767

    Article  Google Scholar 

  39. Riid A, Rüstern E (2003) Transparent fuzzy systems in modelling and control. Volume 128 of Studies in fuzziness and soft computing of (Casillas, Cordon, Herrera & Magdalena, 2003) pp 452–476

  40. Roy A (2000) On connectionism, rule extraction, and brain-like learning. IEEE Trans Fuzzy Syst 8(2):222–227

    Article  Google Scholar 

  41. Ruspini EH (1969) A new approach to clustering. Information and Control 15:22–32

    Article  MATH  Google Scholar 

  42. Setnes M, Babuska R, Verbruggen H (1998) Rule-based modeling: Precision and transparency. IEEE Trans Syst Man Cybern 28(1):165–169

    Article  Google Scholar 

  43. Shreiber G, Wielinga B, Breuker J (1993) KADS- A principled approach to knowledge-based system development. Knowledge-based systems. Academic Press, Harcourt Brace Jovanovich

    Google Scholar 

  44. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15:116–132

    MATH  Google Scholar 

  45. Turksen IB (1991) Measurement of membership functions and their acquisition. Fuzzy Sets Syst 40:5–38

    Article  MathSciNet  MATH  Google Scholar 

  46. Xie X, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

  47. Yager R (1993) On a hierarchical structure for fuzzy modeling and control. IEEE Trans Syst Man Cybern 23(4):1189–1197

    Article  Google Scholar 

  48. Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3:28–44

    MathSciNet  MATH  Google Scholar 

  49. Zadeh LA (1975) The concept of a linguistic variable and its applications to approximate reasoning – Parts I, II and III. Inf Sci 8–9:199–249, 301–357, 43–80

    Google Scholar 

  50. Zadeh LA (1997) What is soft computing. Soft Comput 1:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Guillaume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillaume, S., Magdalena, L. Expert guided integration of induced knowledge into a fuzzy knowledge base. Soft Comput 10, 773–784 (2006). https://doi.org/10.1007/s00500-005-0007-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-005-0007-9

Keywords

Navigation