A local input-to-state stability result w.r.t. attractors of nonlinear reaction–diffusion equations


We establish the local input-to-state stability of a large class of disturbed nonlinear reaction–diffusion equations w.r.t. the global attractor of the respective undisturbed system.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bergh J, Löfström J (1976) Interpolation spaces. Springer, Berlin

    Book  Google Scholar 

  2. 2.

    Chepyzhov VV, Vishik MI (1996) Trajectory attractors for reaction–diffusion systems. Topol Meth Nonlinear Anal 8:49–76

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chepyzhov VV, Vishik MI (2002) Attractors for equations of mathematical physics, vol 49. American Mathematical Society, Colloquium Publications

    MATH  Google Scholar 

  4. 4.

    Dashkovskiy S, Mironchenko A (2013) Input-to-state stability of infinite-dimensional control systems. Math Control Signals Syst 25:1–35

    MathSciNet  Article  Google Scholar 

  5. 5.

    Dashkovskiy S, Kapustyan OV, Romaniuk I (2017) Global attractors of impulsive parabolic inclusions. Discr Contin Dyn Syst Ser B 22:1875–1886

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Diestel J, Uhl JJ (1977) Vector measures. Mathematical surveys and monographs, vol 15. American Mathematical Society

  7. 7.

    Gorban NV, Kapustyan OV, Kasyanov PO, Paliichuk LS (2014) On global attractors for autonomous damped wave equation with discontinuous nonlinearity. Solid Mech Appl 211:221–237

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Gorban NV, Kapustyan AV, Kapustyan EA, Khomenko OV (2015) Strong global attractor for the three-dimensional Navier–Stokes system of equations in unbounded domain of channel type. J Autom Inf Sci 47:48–59

    Article  Google Scholar 

  9. 9.

    Grüne L (2002) Asymptotic behavior of dynamical and control systems under perturbation and discretization. Springer, Berlin

    Book  Google Scholar 

  10. 10.

    Henry D (1981) Geometric theory of semilinear parabolic equations. Springer, Berlin

    Book  Google Scholar 

  11. 11.

    Jacob B, Nabiullin R, Partington J, Schwenninger F (2018) Infinite-dimensional input-to-state stability and Orlicz spaces. SIAM J Control Optim 56:868–889

    MathSciNet  Article  Google Scholar 

  12. 12.

    Jacob B, Schwenninger F (2018) Input-to-state stability of unbounded bilinear control systems. arXiv:1811.08470

  13. 13.

    Kapustyan AV, Valero J (2009) On the Kneser property for the complex Ginzburg–Landau equation and the Lotka–Volterra system with diffusion. J Math Anal Appl 357:254–272

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kapustyan OV, Kasyanov PO, Valero J (2015) Structure of the global attractor for weak solutions of a reaction–diffusion equation. Appl Math Inf Sci 9:2257–2264

    MathSciNet  Google Scholar 

  15. 15.

    Karafyllis I, Krstic M (2016) ISS with respect to boundary disturbances for 1-D parabolic PDEs. IEEE Trans Autom Control 61:3712–3724

    MathSciNet  Article  Google Scholar 

  16. 16.

    Karafyllis I, Krstic M (2017) ISS in different norms for 1-D parabolic PDEs with boundary disturbances. SIAM J Control Optim 55:1716–1751

    MathSciNet  Article  Google Scholar 

  17. 17.

    Mazenc F, Prieur C (2011) Strict Lyapunov functions for semilinear parabolic partial differential equations. Math Control Relat Fields 1:231–250

    MathSciNet  Article  Google Scholar 

  18. 18.

    Mironchenko A (2016) Local input-to-state stability: characterizations and counterexamples. Syst Control Lett 87:23–28

    MathSciNet  Article  Google Scholar 

  19. 19.

    Mironchenko A, Ito H (2016) Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions. Math Control Relat Fields 6:447–466

    MathSciNet  Article  Google Scholar 

  20. 20.

    Mironchenko A (2017) Uniform weak attractivity and criteria for practical global asymptotic stability. Syst Control Lett 105:92–99

    MathSciNet  Article  Google Scholar 

  21. 21.

    Mironchenko A, Wirth F (2018) Characterizations of input-to-state stability for infinite-dimensional systems. IEEE Trans Autom Control 63:1692–1707

    MathSciNet  Article  Google Scholar 

  22. 22.

    Mironchenko A, Karafyllis I, Krstic M (2019) Monotonicity methods for input-to-state stability of nonlinear parabolic PDEs with boundary disturbances. SIAM J Control Optim 57:510–532

    MathSciNet  Article  Google Scholar 

  23. 23.

    Miyadera I (1992) Nonlinear semigroups. Translations of mathematical monographs 109. American Mathematical Society

  24. 24.

    Robinson JC (2001) Infinite-dimensional dyanamical systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. 25.

    Schmid J, Zwart H (2018) Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances. arXiv:1804.10598, Accepted provisionally in ESAIM Contr Optim Calc, Var

  26. 26.

    Schmid J (2019) Weak input-to-state stability: characterizations and counterexamples. Math Control Signals Syst 31:433–454

    MathSciNet  Article  Google Scholar 

  27. 27.

    Schmid J, Kapustyan O, Dashkovskiy S (2019) Asymptotic gain results for attractors of semilinear systems. arXiv:1909.06302

  28. 28.

    Sontag ED, Wang Y (1996) New characterizations of input-to-state stability. IEEE Trans Autom Control 24:1283–1294

    MathSciNet  Article  Google Scholar 

  29. 29.

    Tanwani A, Prieur C, Tarbouriech S (2017) Disturbance-to-state stabilization and quantized control for linear hyperbolic systems. arXiv:1703.00302

  30. 30.

    Temam R (1998) Infinite-dimensional dynamical systems in mechanics and physics, 2nd edn. Springer, Berlin

    Google Scholar 

  31. 31.

    Valero J, Kapustyan AV (2006) On the connectedness and asymptotic behaviour of solutions of reaction–diffusion equations. J Math Anal Appl 323:614–633

    MathSciNet  Article  Google Scholar 

  32. 32.

    Zheng J, Zhu G (2018) Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations. Automatica 97:271–277

    MathSciNet  Article  Google Scholar 

  33. 33.

    Zheng J, Zhu G (2019) A De Giorgi iteration-based approach for the establishment of ISS properties of a class of semi-linear parabolic PDEs with boundary and in-domain disturbances. IEEE Trans Autom Control 64:3476–3483

    Article  Google Scholar 

Download references


S. Dashkovskiy and O. Kapustyan are partially supported by the German Research Foundation (DFG) and the State Fund for Fundamental Research of Ukraine (SFFRU) through the joint German-Ukrainian grant “Stability and robustness of attractors of nonlinear infinite-dimensional systems with respect to disturbances” (DA 767/12-1).

Author information



Corresponding author

Correspondence to Jochen Schmid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Input-to-state stability for infinite-dimensional systems.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dashkovskiy, S., Kapustyan, O. & Schmid, J. A local input-to-state stability result w.r.t. attractors of nonlinear reaction–diffusion equations. Math. Control Signals Syst. 32, 309–326 (2020). https://doi.org/10.1007/s00498-020-00256-w

Download citation


  • Local input-to-state stability
  • Global attractor
  • Nonlinear reaction–diffusion equations