Advertisement

Existence of non-coercive Lyapunov functions is equivalent to integral uniform global asymptotic stability

  • Andrii MironchenkoEmail author
  • Fabian Wirth
Original Article
  • 44 Downloads

Abstract

In this paper, a class of abstract dynamical systems is considered which encompasses a wide range of nonlinear finite- and infinite-dimensional systems. We show that the existence of a non-coercive Lyapunov function without any further requirements on the flow of the forward complete system ensures an integral version of uniform global asymptotic stability. We prove that also the converse statement holds without any further requirements on regularity of the system. Furthermore, we give a characterization of uniform global asymptotic stability in terms of the integral stability properties and analyze which stability properties can be ensured by the existence of a non-coercive Lyapunov function, provided either the flow has a kind of uniform continuity near the equilibrium or the system is robustly forward complete.

Keywords

Nonlinear control systems Infinite-dimensional systems Lyapunov methods Global asymptotic stability 

Notes

Acknowledgements

This research has been supported by the German Research Foundation (DFG) within the project “Input-to-state stability and stabilization of distributed parameter systems” (Grant Wi 1458/13-1).

References

  1. 1.
    Angeli D, Sontag ED (1999) Forward completeness, unboundedness observability, and their Lyapunov characterizations. Syst Control Lett 38(4–5):209–217MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chueshov I (2015) Dynamics of quasi-stable dissipative systems. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    Curtain RF, Zwart H (1995) An introduction to infinite-dimensional linear systems theory. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Dashkovskiy S, Mironchenko A (2013) Input-to-state stability of infinite-dimensional control systems. Math Control Signals Syst 25(1):1–35MathSciNetCrossRefGoogle Scholar
  5. 5.
    Datko R (1970) Extending a theorem of A. M. Liapunov to Hilbert space. J Math Anal Appl 32(3):610–616MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hahn W (1967) Stability of motion. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Hale JK, Verduyn Lunel SM (1993) Introduction to functional-differential equations, volume 99 of Applied mathematical sciences. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Henry D (1981) Geometric theory of semilinear parabolic equations. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Jacob B, Mironchenko A, Partington JR, Wirth F (2018) Remarks on input-to-state stability and non-coercive Lyapunov functions. In: Proceedings of the 57th IEEE Conference on Decision and Control (CDC 2018). Miami Beach, USA, pp 4803–4808Google Scholar
  10. 10.
    Karafyllis I, Jiang Z-P (2011) Stability and stabilization of nonlinear systems. Springer, LondonCrossRefGoogle Scholar
  11. 11.
    Kellett CM (2014) A compendium of comparison function results. Math Control Signals Syst 26(3):339–374MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kellett CM (2015) Classical converse theorems in Lyapunov’s second method. Discrete Continuous Dyn Syst Ser B 20(8):2333–2360MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kellett CM, Dower PM (2016) Input-to-state stability, integral input-to-state stability, and \(L_2\)-gain properties: qualitative equivalences and interconnected systems. IEEE Trans Automat Control 61(1):3–17MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kurzweil J (1956) On the inversion of Lyapunov’s second theorem on stability of motion. Czechoslovak Math J 81:217–259zbMATHGoogle Scholar
  15. 15.
    Lin Y, Sontag ED, Wang Y (1996) A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim 34(1):124–160MathSciNetCrossRefGoogle Scholar
  16. 16.
    Littman W (1989) A generalization of a theorem of Datko and Pazy. In: Advances in computing and control, vol 130. Lecture notes in control and information sciences. Springer, Berlin, pp 318–323Google Scholar
  17. 17.
    Massera JL (1956) Contributions to stability theory. Ann Math 64(1):182–206MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mironchenko A (2017) Uniform weak attractivity and criteria for practical global asymptotic stability. Syst Control Lett 105:92–99MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mironchenko A, Wirth F (2017) A non-coercive Lyapunov framework for stability of distributed parameter systems. In: Proceedings of the 56th IEEE conference on decision and control. IEEE, pp 1900–1905Google Scholar
  20. 20.
    Mironchenko A, Wirth F (2017) Non-coercive Lyapunov functions for infinite-dimensional systems. J Differ Equ.  https://doi.org/10.1016/j.jde.2018.11.026 CrossRefzbMATHGoogle Scholar
  21. 21.
    Mironchenko A, Wirth F (2018) Characterizations of input-to-state stability for infinite-dimensional systems. IEEE Trans Automat Control 63(6):1602–1617MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pepe P, Jiang Z-P (2006) A Lyapunov–Krasovskii methodology for ISS and iISS of time-delay systems. Syst Control Lett 55(12):1006–1014MathSciNetCrossRefGoogle Scholar
  23. 23.
    Saks S (2005) Theory of the integral. Dover Publications, Mineola, NY (reprint of the 2nd rev. ed. (1937))Google Scholar
  24. 24.
    Schnaubelt R (2002) Feedbacks for nonautonomous regular linear systems. SIAM J Control Optim 41(4):1141–1165MathSciNetCrossRefGoogle Scholar
  25. 25.
    Sontag ED (1998) Comments on integral variants of ISS. Syst Control Lett 34(1–2):93–100MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sontag ED, Wang Y (1996) New characterizations of input-to-state stability. IEEE Trans Automat Control 41(9):1283–1294MathSciNetCrossRefGoogle Scholar
  27. 27.
    Szarski J (1965) Differential inequalities. Polish Scientific Publishers PWN, WarszawazbMATHGoogle Scholar
  28. 28.
    Teel A, Panteley E, Loría A (2002) Integral characterizations of uniform asymptotic and exponential stability with applications. Math Control Signals Syst 15(3):177–201MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yoshizawa T (1966) Stability Theory by Liapunov’s second method. Mathematical Society of JapanGoogle Scholar
  30. 30.
    Zames G (1966) On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity. IEEE Trans Automat Control 11(2):228–238CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Computer Science and MathematicsUniversity of PassauPassauGermany

Personalised recommendations