Advertisement

Boundary energy control of a system governed by the nonlinear Klein–Gordon equation

  • Maksim Dolgopolik
  • Alexander L. Fradkov
  • Boris Andrievsky
Original Article
  • 94 Downloads

Abstract

The boundary energy control problem for the sine-Gordon and the nonlinear Klein–Gordon equations is posed. Two control laws solving this problem based on the speed-gradient method with smooth and nonsmooth goal functions are proposed. The control law obtained via a nonsmooth goal function is proved to steer the system to any required nonzero energy level in finite time. The results of the numerical evaluation of the proposed algorithm for an undamped nonlinear elastic string demonstrate attainability of the control goal for the cases of both decreasing and increasing systems’ energy and show high rate of vanishing of the control error.

Keywords

Sine-Gordon equation Klein–Gordon equation Energy control Speed-gradient method 

Notes

Acknowledgements

The authors are grateful to the anonymous referees for thoughtful and stimulating comments that helped to improve the quality of the article.

References

  1. 1.
    Aero E, Fradkov AL, Andrievsky B, Vakulenko S (2006) Dynamics and control of oscillations in a complex crystalline lattice. Phys Lett A 353:24–29CrossRefGoogle Scholar
  2. 2.
    Andrievsky BR, Fradkov AL, Orlov YV (2016) Energy control of distributed parameter systems via speed-gradient method: case study of string and sine-Gordon benchmark models. Int J Control 90:2554–2566MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aström KJ, Furuta K (2000) Swinging up a pendulum by energy control. Automatica 36:278–285MathSciNetGoogle Scholar
  4. 4.
    Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J Control Optim 30:1024–1065MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Blekhman II, Bortsov YA, Fradkov AL, Gavrilov SV, Konoplev VA, Lavrov BP, Shestakov VM, Tomchina OP (2001) Modeling and control of the mechatronic vibrational unit. In: Preprints of 5th IFAC Symposium “Nonlinear Control Systems” (NOLCOS’01), St.Petersburg, pp 894–898Google Scholar
  6. 6.
    Butkovskii AG (1969) Distributed control systems. Elsevier, New YorkGoogle Scholar
  7. 7.
    Cuevas-Maraver J, Kevrekidis P, Williams F (eds) (2014) The sine-Gordon model and its applications. From pendula and Josephson junctions to gravity and high-energy physics. Springer International Publishing, SwitzerlandGoogle Scholar
  8. 8.
    Dolgopolik MV, Fradkov AL, Andrievsky B (2016) Boundary energy control of the sine-Gordon equation. In: Proceedings of the 6th IFAC workshop on periodic control systems (PSYCO2016), EindhovenGoogle Scholar
  9. 9.
    Dormand JR, Prince PJ (1980) A family of embedded Runge–Kutta formulae. J Comput Appl Math 6:19–26MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fradkov AL (1996) Swinging control of nonlinear oscillations. Int J Control 64:1189–1202MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fradkov AL (1999) Exploring nonlinearity by feedback. Physica D 128:159–168CrossRefzbMATHGoogle Scholar
  12. 12.
    Fradkov AL (2007) Cybernetical physics: from control of chaos to quantum control. Springer, BerlinzbMATHGoogle Scholar
  13. 13.
    Fradkov AL, Pogromsky AY (1998) Introduction to control of oscillations and chaos. World Scientific Publishers, SingaporeCrossRefzbMATHGoogle Scholar
  14. 14.
    Fridman E, Terushkin M (2016) New stability and exact observability conditions for semilinear wave equations. Automatica 63:1–10MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gravel P, Gauthier C (2011) Classical applications of the Klein–Gordon equation. Am J Phys 79:447–453CrossRefGoogle Scholar
  16. 16.
    Hardy GH, Littlewood JE, Pólya G (1952) Inequalities. Cambridge University Press, CambridgezbMATHGoogle Scholar
  17. 17.
    Jiang T, Liu J, He W (2015) Boundary control for a flexible manipulator based on infinite dimensional disturbance observer. J Sound Vib 348:1–14CrossRefGoogle Scholar
  18. 18.
    Joly R, Laurent C (2014) A note on the semiglobal controllability of the semilinear wave equation. SIAM J Control Optim 52:439–450MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kani M, Khadem SE, Pashaei MH, Dardel M (2016) Vibration control of a nonlinear beam with a nonlinear energy sink. Nonlinear Dyn 83(1–2):1–22MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kim D, Kim S, Jung IH (2012) Stabilization for the kirchhoff type equation from an axially moving heterogeneous string modeling with boundary feedback control. Nonlinear Anal 75(8):3598–3617MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kobayashi T (2003a) Adaptive stabilization of infinite-dimensional semilinear second-order systems. IMA J Math Control Inf 20:137–152MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kobayashi T (2003b) Boundary feedback stabilization of the sine-Gordon equation without velocity feedback. J Sound Vib 266:775–784MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kobayashi T (2004) Adaptive stabilization of the sine-Gordon equation by boundary control. Math Methods Appl Sci 27:957–970MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Luongo A, Zulli D (2015) Nonlinear energy sink to control elastic strings: the internal resonance case. Nonlinear Dyn 81(1–2):425–435MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Matei A, Micu S (2011) Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal 74(5):1641–1652MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mordukhovich BS, Raymond JP (2005) Optimal boundary control of hyperbolic equations with pointwise state constraints. Nonlinear Anal 63(5–7):823–830MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Natarajan V, Zhou HC, Weiss G, Fridman E (2016) Exact controllability of a class of nonlinear distributed parameter systems using back-and-forth iterations. Int J Control.  https://doi.org/10.1080/00207179.2016.1266513 Google Scholar
  28. 28.
    Nguyen QC, Hong KS (2010) Asymptotic stabilization of a nonlinear axially moving string by adaptive boundary control. J Sound Vib 329(22):4588–4603CrossRefGoogle Scholar
  29. 29.
    Nguyen TL, Do KD, Pan J (2013) Boundary control of two-dimensional marine risers with bending couplings. J Sound Vib 332(16):3605–3622CrossRefGoogle Scholar
  30. 30.
    Orlov YV (2009) Discontinuous systems: Lyapunov analysis and robust synthesis under uncertainty conditions. Springer, LondonzbMATHGoogle Scholar
  31. 31.
    Porubov AV, Fradkov AL, Andrievsky BR (2015) Feedback control for some solutions of the sine-Gordon equation. Appl Math Comput 269:17–22MathSciNetGoogle Scholar
  32. 32.
    Shiriaev AS, Egeland O, Ludvigsen H, Fradkov AL (2001) VSS-version of energy-based control for swinging up a pendulum. Syst Control Lett 44:45–56MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Soufyane A, Afilal M, Aouam T, Chacha M (2010) General decay of solutions of a linear one-dimensional porous-thermoelasticity system with a boundary control of memory type. Nonlinear Anal 72(11):3903–3910MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Spong MW (1995) The swing up control problem for the acrobot. IEEE Control Syst Mag 15(1):49–55CrossRefGoogle Scholar
  35. 35.
    Stavre R (2016) A boundary control problem for the blood flow in venous insufficiency. The general case. Nonlinear Anal: Real World Appl 29:98–116MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tanaka N, Iwamoto H (2007) Active boundary control of an Euler–Bernoulli beam for generating vibration-free state. J Sound Vib 304(3–5):570–586MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tian L, Shi Q, Liu Y (2009) Boundary control of viscosity Degasperis–Procesi equation. Nonlinear Anal 71(1–2):382–390MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Udwadia FE, Mylapilli H (2015) Energy control of nonhomogeneous Toda lattices. Nonlinear Dyn 81(3):1355–1380MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Yu H, Yu J, Wu H, Li H (2013) Energy-shaping and integral control of the three-tank liquid level system. Nonlinear Dyn 73(4):2149–2156MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zong X (2014) On the global boundary stabilization of the Camassa–Holm equation. Nonlinear Anal: Real World Appl 15:221–228MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSaint PetersburgRussia
  2. 2.ITMO UniversitySaint PetersburgRussia
  3. 3.Saint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations