Skip to main content
Log in

A Fibonacci control system with application to hyper-redundant manipulators

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We study a model for snake-like robots based on the Fibonacci sequence. The present paper includes an investigation of the reachable workspace, a more general analysis of the control system underlying the model, its reachability and local controllability properties. In addition, we establish some fractal properties of the reachable workspace by means the theory of iterated function systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Notice that \(L(\mathbf u)=L(\mathbf u,\mathbf v)\) for all \(\mathbf v\in \{0,1\}^\infty \) where \(L(\mathbf u,\mathbf v):=\sum _{n=1}^\infty |x_n(\mathbf u,\mathbf v)-x_{n-1}(\mathbf u,\mathbf v)|\).

  2. Actually, we prove that such a neighborhood is indeed a polygon which is symmetric with respect to the origin.

  3. Indeed the claim immediately follows by recalling the equality \(\{L(\mathbf u)\mid \mathbf u\in \{0,1\}^\infty \}=R_\infty (q)\).

References

  1. Anderson VV, Horn RC (1967) Tensor-arm manipulator design. Am Soc Mech Eng 67-DE-75:1–12

  2. Baillieul J (1986) Avoiding obstacles and resolving kinematic redundancy. IEEE Int Conf Robot Autom 3:1698–1704

    Google Scholar 

  3. Ball P (1999) The self-made tapestry: pattern formation in nature. Oxford University Press, Oxford

    MATH  Google Scholar 

  4. Burdick JW (1988) Kinematic analysis and design of redundant robot manipulators. Stanford University, Diss

    Google Scholar 

  5. Chirikjian GS, Burdick JW (1990) An obstacle avoidance algorithm for hyper-redundant manipulators. IEEE Int Conf Robot Autom 1:625–631

    Article  Google Scholar 

  6. Chirikjian GS, Burdick JW (1995) The kinematics of hyper-redundant robot locomotion. IEEE Trans Robot Autom 11(6):781–793

    Article  Google Scholar 

  7. Choset H, Henning W (1999) A follow-the-leader approach to serpentine robot motion planning. J Aerosp Eng 12(2):65–73

    Article  Google Scholar 

  8. Chitour Y, Piccoli B (2001) Controllability for discrete control systems with a finite control set. Math Control Signal Syst 14:173–193

    Article  MathSciNet  MATH  Google Scholar 

  9. Ebert-Uphoff I, Chirikjian GS (1996) Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities. IEEE Int Conf Robot Autom 1:139–145

    Article  Google Scholar 

  10. Erdös P, Komornik V (1998) Developments in non-integer bases. Acta Math Hungar 79(1–2):57–83

    Article  MathSciNet  MATH  Google Scholar 

  11. Falconer K (2013) Fractal geometry: mathematical foundations and applications. Wiley, New York

  12. Gilbert WJ (1981) Geometry of radix representations. The geometric vein. Springer, New York, pp 129–139

  13. Gilbert WJ (1987) Complex bases and fractal similarity. Ann Sci.Math Québec 11(1):65–77

    MathSciNet  MATH  Google Scholar 

  14. Indlekofer K-H, Kátai I, Racskó P (1992) Number systems and fractal geometry. Probability theory and applications. Springer, The Netherlands, pp 319–334

  15. Hutchinson J (1981) Fractals and self-similarity Indiana Univ. J Math 30:713–747

    MathSciNet  MATH  Google Scholar 

  16. Komornik V, Loreti P (2007) Expansions in complex bases. Can Math Bull 50(3):399–408

    Article  MathSciNet  MATH  Google Scholar 

  17. Kwon SJ, Chung WK, Youm Y, Kim MS (1991) Self-collision avoidance for n-link redundant manipulators. Proceedings of the IEEE international conference on system, man and cybernetics, Charlottesville, USA, pp 937–942

  18. Lai AC (2012) Geometrical aspects of expansions in complex bases. Acta Math Hung 136(4):275–300

    Article  MathSciNet  MATH  Google Scholar 

  19. Lai AC, Loreti P (2011) Robot’s finger and expansions in non-integer bases. Netw Heterog Media 7(1):71–111

    Article  MathSciNet  MATH  Google Scholar 

  20. Lai AC, Loreti P (2014) Robot’s hand and expansions in non-integer bases. Discret. Math. Theor Comput Sci 16(1):371–394

    MathSciNet  MATH  Google Scholar 

  21. Lai AC, Loreti P (2012) Discrete asymptotic reachability via expansions in non-integer bases. Proceedings of 9-th international conference on informatics in control, automation and robotics

  22. Lai AC, Loreti P, Vellucci P (2014) A model for robotic hand based on fibonacci sequence. Proceedings of the 11-th international conference on informatics in control, automation and robotics, pp 577–587

  23. Liu J, Wang Y, Ma S, Li B (2004) Shape control of hyper-redundant modularized manipulator using variable structure regular polygon. Intell Robots Syst 4:3924–3929

    Google Scholar 

  24. Park AE, Fernandez JJ, Schmedders K, Cohen MS (2003) The Fibonacci sequence: relationship to the human hand. J Hand Surg Am 28(1):157–160

    Article  Google Scholar 

  25. Parry W (1960) On the \(\beta \)-expansions of real numbers. Acta Math Acad Sci Hungar 11:401–416

    Article  MathSciNet  MATH  Google Scholar 

  26. Rényi A (1957) Representations for real numbers and their ergodic properties. Acta Math Acad Sci Hung 8:477–493

    Article  MathSciNet  MATH  Google Scholar 

  27. Wille J (2012) Occurrence of Fibonacci numbers in development and structure of animal forms: Phylogenetic observations and epigenetic significance. Nat Sci 4:216–232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Loreti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, A.C., Loreti, P. & Vellucci, P. A Fibonacci control system with application to hyper-redundant manipulators. Math. Control Signals Syst. 28, 15 (2016). https://doi.org/10.1007/s00498-016-0167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00498-016-0167-4

Keywords

Navigation