A structured pseudospectral method for \(\mathcal {H}_\infty \)-norm computation of large-scale descriptor systems

  • Peter Benner
  • Matthias VoigtEmail author
Original Article


In this paper, we discuss the problem of computing the \({\mathcal {H}}_\infty \)-norm of transfer functions associated to large-scale descriptor systems. We exploit the relationship between the \({\mathcal {H}}_\infty \)-norm and the structured complex stability radius of a corresponding matrix pencil. To compute the structured stability radius we consider so-called structured pseudospectra. Namely, we have to find the pseudospectrum touching the imaginary axis. Therefore, we set up an iteration over the real part of the rightmost pseudoeigenvalue. For that, we use a new fast iterative scheme which is based on certain rank-1 perturbations of a matrix pencil. Finally, we analyze the performance of our algorithm by using real-world examples. In particular we compare our method with different other algorithms including a recently and independently derived method from Guglielmi, Gürbüzbalaban and Overton.


Descriptor systems \({\mathcal {H}}_\infty \) control Iterative methods Pseudospectra Sparse matrices Stability of linear systems 



We thank Volker Mehrmann from TU Berlin for pointing at the difficulties arising if the perturbations make the transfer functions improper or not well-defined. We gratefully acknowledge the work done by our former intern Maximilian Bremer from the University of Texas at Austin by implementing a MATLAB code for the visualization of structured pseudospectra. Furthermore, we thank the two anonymous reviewers for their valuable and constructive comments that helped to significantly improve the quality of the paper.


  1. 1.
    Benner P, Byers R, Mehrmann V, Xu H (2002) Numerical computation of deflating subspaces of skew-Hamiltonian/Hamiltonian pencils. SIAM J Matrix Anal Appl 24:165–190CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Benner P, Saak J, Schieweck F, Skrzypacz P, Weichelt HK (2012) A non-conforming composite quadrilateral finite element pair for feedback stabilization of the Stokes equations. J Numer Math. Accepted, also available as Max Planck Institute Magdeburg, Preprint MPIMD/12-19Google Scholar
  3. 3.
    Benner P, Sima V, Voigt M (2012) \({\cal L}_\infty \)-norm computation for continuous-time descriptor systems using structured matrix pencils. IEEE Trans Automat Control 57:233–238Google Scholar
  4. 4.
    Benner P, Sima V, Voigt M (2012) Robust and efficient algorithms for \({\cal L}_\infty \)-norm computation for descriptor systems. In: Proceedings of the 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark, IFAC, pp 195–200Google Scholar
  5. 5.
    Benner P, Voigt M (2012) \({\cal {H}}_\infty \)-norm computation for large and sparse descriptor systems. Proc Appl Math Mech 12:797–800CrossRefGoogle Scholar
  6. 6.
    Benner P, Voigt M (2012) Numerical computation of structured complex stability radii od large-scale matrices and pencils. In: Proceedings of the 51st IEEE Conference on Decision and Control. Maui, Hawaii, pp 6560–6565Google Scholar
  7. 7.
    Boyd S, Balakrishnan V (1990) A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its \(L_{\infty }\)-norm. Syst Control Lett 15:1–7CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Boyd S, Balakrishnan V, Kabamba P (1989) A bisection method for computing the \(H_\infty \) norm of a transfer matrix and related problems. Math Control Signals Syst 2:207–219CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bruinsma NA, Steinbuch M (1990) A fast algorithm to compute the \(H_{\infty }\)-norm of a transfer function matrix. Syst Control Lett 14:287–293CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Burke JV, Lewis AS, Overton ML (2003) Robust stability and a criss-cross algorithm for pseudospectra. IMA J Numer Anal 23:359–375CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Byers R (1988) A bisection method for measuring the distance of a stable matrix to the unstable matrices. SIAM J Sci Stat Comput 9:875–881CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Byers R, Nichols NK (1993) On the stability radius of generalized state-space systems. Linear Algebra Appl 188–189:113–134Google Scholar
  13. 13.
    Chahlaoui Y, Gallivan K, Van Dooren P (2004) \({\cal H}_\infty \)-norm calculations of large sparse systems. In: Proceedings of the International Symposium of Mathematical Theory of Networks and Systems. Leuven, BelgiumGoogle Scholar
  14. 14.
    Chahlaoui Y, Gallivan K, Van Dooren P (Oct. 2007) Calculating the \({\cal H}_\infty \) norm of a large sparse system via Chandrasekhar iterations and extrapolation. In: ESAIM Proceedings, vol 20. Rabat, AlgeriaGoogle Scholar
  15. 15.
    Y. Chahlaoui, Van Dooren P (2002) A collection of benchmark examples for model reduction of linear time invariant dynamical systems. Technical report, Feb. 2002. SLICOT Working Note 2002–2Google Scholar
  16. 16.
    Dai L (1989) Singular control systems, vol. 118 of Lecture Notes in Control and Inform. Sci. Springer, HeidelbergGoogle Scholar
  17. 17.
    Du NH (2008) Stability radii of differential algebraic equations with structured perturbations. Syst Control Lett 57:546–553CrossRefzbMATHGoogle Scholar
  18. 18.
    Du NH, Linh VH, Mehrmann V (2013) Robust stability of differential-algebraic equations. In Surveys in Differential-Algebraic Equations I. In: Ilchmann A, Reis T (eds) Differential-Algebraic Equations Forum. Springer, Berlin, Heidelberg, ch. 2, pp 63–95Google Scholar
  19. 19.
    Du NH, Thuan DD, Liem NC (2011) Stability radius of implicit dynamic equations with constant coefficients on time scales. Syst Control Lett 60:596–603CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Eich-Soellner E, Führer C (1998) Numerical methods in multibody dynamics. B. G. Teubner, StuttgartCrossRefzbMATHGoogle Scholar
  21. 21.
    Freitas F, Rommes J, Martins N (2008) Gramian-based reduction method applied to large sparse power system descriptor models. IEEE Trans Power Syst 23:1258–1270CrossRefGoogle Scholar
  22. 22.
    Guglielmi N, Gürbüzbalaban M, Overton ML (2013) Fast approximation of the \(H_\infty \) norm via optimization of spectral value sets. SIAM J Matrix Anal Appl 34:709–737CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Guglielmi N, Kressner D, Lubich C (2013) Low-rank differential equations for Hamiltonian matrix nearness problems, Oberwolfach Preprint OWP 2013–01, Mathematisches Forschungsinstitut Oberwolfach, Jan. 2013. Available from
  24. 24.
    Guglielmi N, Lubich C (2013) Low-rank dynamics for computing extremal points of real pseudospectra. SIAM J Matrix Anal Appl (in press)Google Scholar
  25. 25.
    Guglielmi N, Overton ML Local convergence analysis of [22]- private communication with M. L. OvertonGoogle Scholar
  26. 26.
    Guglielmi N, Overton ML (2011) Fast algorithms for the approximation of the pseudospectral abscissa and pseudospectral radius of a matrix. SIAM J Matrix Anal Appl 32:1166–1192CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Heinkenschloss M, Sorensen DC, Sun K (2008) Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations. SIAM J Sci Comput 30:1038–1063CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Hinrichsen D, Pritchard AJ (1986) Stability radii of linear systems. Syst Control Lett 7:1–10Google Scholar
  29. 29.
    Hinrichsen D, Pritchard AJ (1986) Stability radius for structured perturbations and the algebraic Riccati equation. Syst Control Lett 8:105–113CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Hinrichsen D, Pritchard AJ (1990) Real and complex stability radii: a survey. In: Progress in systems and Control Theory, vol 6. Birkhäuser, Boston, pp 119–162Google Scholar
  31. 31.
    Kunkel P, Mehrmann V (2006) Differential-Algebraic Equations—Analysis and Numerical Solution. In: Textbooks in Mathematics. European Mathematical Society, ZürichGoogle Scholar
  32. 32.
    Leibfritz F (2004) Compl\(_{e}\)ib: Constraint matrix-optimization problem library—a collection of test examples for nonlinear semidefinite programs, control system design and related problems. Technical report, 2004. Available from
  33. 33.
    Leibfritz F, Lipinski W (2004) Compl\(_{e}\)ib 1.0 - user manual and quick reference. Technical report, 2004. Available from
  34. 34.
    Martins N, Pellanda PC, Rommes J (2007) Computation of transfer function dominant zeros with applications to oscillation damping control of large power systems. IEEE Trans Power Syst 22:1657–1664CrossRefGoogle Scholar
  35. 35.
    Mehrmann V, Schröder C, Simoncini V (2012) An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems. Linear Algebra Appl 436:4070–4087CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Mehrmann V, Stykel T (2005) Balanced truncation model reduction for large-scale systems in descriptor form. In: Benner P, Mehrmann V, Sorensen D (eds) Dimension Reduction of Large-Scale Systems, vol 45 of Lecture Notes Comput. Sci. Eng. Springer, Berlin, Heidelberg, New York, ch. 3, pp 89–116Google Scholar
  37. 37.
    Overton ML, Van Dooren P (2005) On computing the complex passivity radius. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, pp 7960–7964Google Scholar
  38. 38.
    Reis T (2010) Circuit synthesis of passive descriptor systems—a modified nodal approach. Int J Circ Theor Appl 38:44–68CrossRefzbMATHGoogle Scholar
  39. 39.
    Reis T, Stykel T (2010) PABTEC: Passivity-preserving balanced truncation for electrical circuits. IEEE Trans Computer-Aided Design Integr Circuits Syst 29:1354–1367Google Scholar
  40. 40.
    Reis T, Stykel T (2011) Lyapunov balancing for passivity-preserving model reduction of RC circuits. SIAM J Appl Dyn Syst 10:1–34CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Riedel KS (1994) Generalized epsilon-pseudospectra. SIAM J Numer Anal 31:1219–1225CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Rommes J (2008) Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems \(Ax=\lambda Bx\) with singular \(B\). Math Comp 77:995–1015CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Rommes J, Martins N (2006) Efficient computation of multivariate transfer function dominant poles using subspace acceleration. IEEE Trans Power Syst 21:1471–1483CrossRefGoogle Scholar
  44. 44.
    Rommes J, Martins N (2006) Efficient computation of transfer function dominant poles using subspace acceleration. IEEE Trans Power Syst 21:1218–1226CrossRefGoogle Scholar
  45. 45.
    Rommes J, Sleijpen GLG (2008) Convergence of the dominant pole algorithm and Rayleigh quotient iteration. SIAM J Matrix Anal Appl 30:346–363CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Stewart GW, Sun J-G (1990) Matrix Perturbation Theory. In: Computer Science and Scientific Computing. Academic Press, LondonGoogle Scholar
  47. 47.
    Weickert J (1997) Applications of the Theory of Differential-Algebraic Equations to Partial Differential Equations of Fluid Dynamics. PhD thesis, Chemnitz University of Technology, Department of Mathematics, GermanyGoogle Scholar
  48. 48.
    Wright TG (2002) Eigtool, 2002. Available from
  49. 49.
    Zhou K, Doyle JD (1998) Essentials of Robust Control, 1st edn. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany

Personalised recommendations