Skip to main content
Log in

Exact controllability of a Rayleigh beam with a single boundary control

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We prove exact boundary controllability for the Rayleigh beam equation \({\varphi_{tt} -\alpha\varphi_{ttxx} + A\varphi_{xxxx} = 0, 0 < x < l, t > 0}\) with a single boundary control active at one end of the beam. We consider all combinations of clamped and hinged boundary conditions with the control applied to either the moment \({\varphi_{xx}(l, t)}\) or the rotation angle \({\varphi_{x}(l, t)}\) at an end of the beam. In each case, exact controllability is obtained on the space of optimal regularity for L 2(0, T) controls for \({T > 2l\sqrt{\frac{\alpha}{A}}}\). In certain cases, e.g., the clamped case, the optimal regularity space involves a quotient in the velocity component. In other cases, where the regularity for the observed problem is below the energy level, a quotient space may arise in solutions of the observed problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araruna FD, Zuazua E (2008) Controllability of the Kirchhoff system for beams as limit of the Mindlin–Timoshenko one. SIAM J Control Optim 47(4): 1909–1938

    Article  MathSciNet  MATH  Google Scholar 

  2. Eller M, Lasiecka I, Triggiani R (2001) Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discret Contin Dyn Syst 7: 283–302

    Article  MathSciNet  MATH  Google Scholar 

  3. Eller M, Lasiecka I, Triggiani R (2001) Unique continuation for over-determined Kirchoff plate equations and related thermo-elastic systems. J Inverse Ill-Posed Probl 9(2): 103–148

    MathSciNet  MATH  Google Scholar 

  4. Hansen SW (2004) Several related models for multilayer sandwich plates. Math Models Methods Appl Sci 14: 1103–1131

    Article  MathSciNet  MATH  Google Scholar 

  5. Hansen SW, Zhang Y (1997) Exact controllability of thermoelastic beams. J Math Anal Appl 210: 182–205

    Article  MathSciNet  MATH  Google Scholar 

  6. Hansen SW, Lyashenko A (1997) Exact controllability of a beam in an inviscid fluid. Discret Contin Dyn Syst 3: 59–78

    Article  MathSciNet  MATH  Google Scholar 

  7. Hansen SW, Rajaram R (2005) Riesz basis property and related results for a Rao–Nakra sandwich beam. Discret Contin Dyn Syst Supplement vol 365–375

  8. Hansen SW, Imanuilov O (2011) Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions. ESAIM: COCV. doi:10.1051/cocv/2010041

  9. Komornik V (1989) A new method of exact controllability in short time and applications. Annales de la faculté des sciences de Toulouse Sér 5 10(3): 415–464

    MathSciNet  MATH  Google Scholar 

  10. Loreti KP (2005) Fourier series in control theory. Springer, New York

    MATH  Google Scholar 

  11. Lagnese JE, Lions J-L (1988) Modeling analysis and control of thin plates. Masson, Paris

    Google Scholar 

  12. Lasiecka I (1999) Boundary stabilization of a 3-dimensional structural acoustic model. Journal des Mathematiques Pures et Appliquees 78(2): 203–232

    Article  MathSciNet  MATH  Google Scholar 

  13. Lasiecka I, Triggiani R (1991) Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only in \({\left. {\Delta w}\right|_\Sigma}\) . J Differ Equ 93: 62–101

    Article  MathSciNet  MATH  Google Scholar 

  14. Lasiecka I, Triggiani R (2001) Factor spaces and implications on Kirchhoff equations with clamped boundary conditions. Abstr Appl Anal 6(8): 441–488

    Article  MathSciNet  MATH  Google Scholar 

  15. Lasiecka I, Triggiani R (2000) Sharp regularity theory for elastic and thermoelastic Kirchoff tquations with free boundary conditions. Rocky Mt J Math 30(3): 981–1024

    Article  MathSciNet  MATH  Google Scholar 

  16. Lions JL (1988) Exact controllability, stabilization and perturbations for distributed parameter systems. SIAM Rev 30(1): 1–68

    Article  MathSciNet  MATH  Google Scholar 

  17. Ozer AO, Hansen SW (2011) Exact boundary controllability and feedback stabilization for a multi-layer Rao-Nakra beam. PhD thesis, Iowa State University

  18. Tataru D (1994) A-priori estimates of Carleman’s type in domains with boundary. Journal des Mathematiques Pures et Appliquees 73: 355–387

    MathSciNet  MATH  Google Scholar 

  19. Teresa L, Zuazua E (1996) Controllability of the linear system of thermoelastic plates. Adv Differ Equ 1(3): 369–402

    MATH  Google Scholar 

  20. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  21. Weiss G, Curtain RF (2008) Exponential stabilization of a Rayleigh beam using colocated control. IEEE Trans Autom Control 53(3): 643–646

    Article  MathSciNet  Google Scholar 

  22. Zhang X, Zuazua E (2006) A sharp observability inequality for Kirchhoff plate systems with potentials. Comput Appl Math 25(2–3): 353–373

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott W. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozkan Ozer, A., Hansen, S.W. Exact controllability of a Rayleigh beam with a single boundary control. Math. Control Signals Syst. 23, 199–222 (2011). https://doi.org/10.1007/s00498-011-0069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-011-0069-4

Keywords

Navigation