Skip to main content
Log in

On the transversality of functions at the core of the transverse function approach to control

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

The transverse function approach to control, introduced by Morin and Samson in the early 2000s, is based on functions that are transverse to a set of vector fields in a sense formally similar to, although strictly speaking different from, the classical notion of transversality in differential topology. In this paper, a precise link is established between transversality and the functions used in the transverse function approach. It is first shown that a smooth function \({f : M \longrightarrow Q}\) is transverse to a set of vector fields which locally span a distribution D on Q if, and only if, its tangent mapping T f is transverse to D, where D is regarded as a submanifold of the tangent bundle T Q. It is further shown that each of these two conditions is equivalent to transversality of T f to D along the zero section of T M. These results are then used to rigorously state and prove that if M is compact and D is a distribution on Q, then the set of mappings of M into Q that are transverse to D is open in the strong (or “Whitney C -”) topology on C (M, Q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millman RS, Sussmann HJ (eds) Differential geometric control theory. Progress in Mathematics, vol 27. Birkhäuser, Boston, pp 181–191

    Google Scholar 

  2. Canudasde Wit C, Khennouf H, Samson C, Sørdalen OJ (1994) Nonlinear control design for mobile robots. In: Zheng YF (eds) Recent trends in mobile robots. Series in Robotics and Automated Systems, vol 11. World Scientific Publ Co., Singapore, pp 121–156

    Google Scholar 

  3. Coron J-M (1990) A necessary condition for feedback stabilization. Syst Control Lett 14: 227–232

    Article  MathSciNet  MATH  Google Scholar 

  4. Coron J-M (1992) Global asymptotic stabilization for controllable systems without drift. Math Control Signals Syst 5: 295–312

    Article  MathSciNet  MATH  Google Scholar 

  5. Golubitsky M, Guillemin VW (1973) Stable mappings and their singularities. Graduate Texts in Mathematics, vol 14. Springer, New York

    Google Scholar 

  6. Guillemin V, Pollack A (1974) Differential topology. Prentice Hall, Inc., Englewood Cliffs

    MATH  Google Scholar 

  7. Gurvits L, Li ZX (1992) Smooth time-periodic feedback solutions for nonholonomic motion planning. In: Li V, Canny JF (eds) Nonholonomic motion planning. Kluwer Acad Publ, pp 53–108

  8. Hardy M (2006) Combinatorics of partial derivatives. Electron J Combin 13:#R1

    Google Scholar 

  9. Hirsch MW (1976) Differential topology. Graduate Texts in Mathematics, vol 33. Springer, New York

    Google Scholar 

  10. Illman S, Kankaanrinta M (2000) A new topology for the set C ∞, g(m, n) of G-equivariant smooth maps. Math Ann 316(1): 139–168

    Article  MathSciNet  MATH  Google Scholar 

  11. Ishikawa M, Morin P, Samson C (2009) Tracking control of the trident snake robot with the transverse function approach. In: IEEE Conference on Decision and Control (CDC). Shanghai, pp 4137–4143

  12. Jiang Z-P, Nijmeijer H (1997) Backstepping-based tracking control of nonholonomic chained systems. In: European Control Conference (ECC), Brussels

  13. Lefeber E, Robertsson A, Nijmeijer H (2000) Linear controllers for exponential tracking of systems in chained-form. Int J Robust Nonlinear Control 10: 243–263

    Article  MathSciNet  MATH  Google Scholar 

  14. Lizárraga DA (2003) Obstructions to the existence of universal stabilizers for smooth control systems. Math Control Signals Syst 16: 255–277

    Google Scholar 

  15. Lizárraga DA, Aneke NPI, Nijmeijer H (2004) Robust point-stabilization of underactuated mechanical systems via the extended chained form. SIAM J Control Optim 42(6): 2172–2199

    Article  MathSciNet  MATH  Google Scholar 

  16. Lizárraga DA, Morin P, Samson C (1999) Non-robustness of continuous homogeneous stabilizers for affine control systems. In: IEEE Conference on Decision and Control (CDC), vol 1, Phoenix, pp 855–860

  17. Lizárraga DA, Sosa JM (2005) Vertically transverse functions as an extension of the transverse function control approach for second-order systems. In: IEEE Conference on Decision and Control and European Control Conference ECC, Sevilla, pp 7290–7295

  18. Lizárraga DA, Sosa JM (2008) Control of mechanical systems on Lie groups based on vertically transverse functions. Math Control Signals Syst 20(4): 111–133

    Article  MATH  Google Scholar 

  19. M’Closkey RT, Murray RM (1997) Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans Autom Control 42: 614–628

    Article  MathSciNet  MATH  Google Scholar 

  20. Morin P, Pomet J-B, Samson C (1999) Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of Lie brackets in closed loop. SIAM J Control Optim 38(1): 22–49

    Article  MathSciNet  MATH  Google Scholar 

  21. Morin P, Samson C (1999) Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics. Control Optim Calc Var (COCV) 4: 1–35

    Article  MathSciNet  MATH  Google Scholar 

  22. Morin P, Samson C (2001) A characterization of the Lie Algebra Rank Condition by Transverse Periodic Functions. SIAM J Control Optim 40(4): 1227–1249

    Article  MathSciNet  MATH  Google Scholar 

  23. Morin P, Samson C (2003) Practical stabilization of driftless systems on Lie groups: The transverse function approach. IEEE Trans Autom Control 48(9): 1496–1508

    Article  MathSciNet  Google Scholar 

  24. Morin P, Samson C (2004) Practical and asymptotic stabilization of chained systems by the transverse function control approach. SIAM J Control Optim 43(1): 32–57

    Article  MathSciNet  MATH  Google Scholar 

  25. Morin P, Samson C (2009) Transverse functions on special orthogonal groups for vector fields satisfying the LARC at the order one. In: IEEE Conference on Decision and Control (CDC), Shanghai, pp 7472–7477

  26. Munkres JR (2000) Topology, 2nd edn. Prentice Hall Inc., Upper Saddle River

  27. Murray RM, Walsh G, Sastry SS (1992) Stabilization and tracking for nonholonomic control systems using time-varying feedback. In: IFAC Nonlinear Control Systems Design Symposium (NOLCOS), pp 109–114

  28. Panteley E, Lefeber E, Loría A, Nijmeijer H (1998) Exponential tracking control of a mobile car using a cascaded approach. In: Proceedings of the “IFAC Workshop on Motion Control”, Grenoble, pp 221–226

  29. Rosier L (1992) Homogeneous Lyapunov function for homogeneous continuous vector field. Syst Control Lett 19: 467–473

    Article  MathSciNet  MATH  Google Scholar 

  30. Samson C (1991) Velocity and torque feedback control of a nonholonomic cart. In: International Workshop in Adaptative and Nonlinear Control: Issues in Robotics. Grenoble 1990, vol 162. Springer, pp 125–151

  31. Samson C, Ait-Abderrahim K (1991) Feedback control of a nonholonomic wheeled cart in cartesian space. In: IEEE Conference on Robotics and Automation (ICRA), Sacramento, pp 1136–1141

  32. Saunders DJ (1989) The geometry of jet bundles. Number 142 in Lecture Note Series. Cambridge University Press, Cambridge

    Google Scholar 

  33. Sontag ED (1998) Mathematical control theory. Springer, New York

    MATH  Google Scholar 

  34. Walsh G, Tilbury D, Sastry S, Murray R, Laumond J-P (1994) Stabilization of trajectories for systems with nonholonomic constraints. IEEE Trans Autom Control 39(1): 216–222

    Article  MathSciNet  MATH  Google Scholar 

  35. Warner FW (1983) Foundations of differentiable manifolds and Lie groups. Graduate Texts in Mathematics, vol 94. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Lizárraga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lizárraga, D.A. On the transversality of functions at the core of the transverse function approach to control. Math. Control Signals Syst. 23, 177–197 (2011). https://doi.org/10.1007/s00498-011-0067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-011-0067-6

Keywords

Navigation