Skip to main content
Log in

Equivalence conditions for behaviors and the Kronecker canonical form

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

In this paper we explore equivalence conditions and invariants for behaviors given in kernel representations. In case the kernel representation is given in terms of a linear matrix pencil, the invariants for strict equivalence are given by the Kronecker canonical form which, in turn, we interpret in geometric control terms. If the behavior is given in a kernel representation by a higher order rectangular polynomial matrix, the natural equivalence concept is behavior equivalence. These notions are closely related to the Morse group that incorporates state space similarity transformations, state feedback, and output injection. A simple canonical form for behavioral equivalence is given that clearly exhibits the reachable and autonomous parts of the behavior. Using polynomial models we also present a unified approach to pencil equivalence that elucidates the close connections between classification problems from linear algebra, geometric control theory, and behavior theory. We also indicate how to derive the invariants under behavior equivalence from the Kronecker invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aling H, Schumacher JM (1984) A nine-fold decomposition for linear systems. Int J Control 39: 779–805

    Article  MathSciNet  MATH  Google Scholar 

  2. Bisiacco M, Valcher M-E (2001) Behavior decompositions and two-sided diophantine equations. Automatica 37: 1387–1395

    Article  MATH  Google Scholar 

  3. Brunovsky P (1970) A classification of linear controllale systems. Kybernetika 6: 173–187

    MathSciNet  MATH  Google Scholar 

  4. Fagnani F, Zampieri S (1997) Classification problems for shifts on modules over a principal ideal domain. Trans Am Math Soc 349: 1993–2006

    Article  MathSciNet  MATH  Google Scholar 

  5. Fuhrmann PA (1976) Algebraic system theory: an analyst’s point of view. J Franklin Inst 301: 521–540

    Article  MathSciNet  MATH  Google Scholar 

  6. Fuhrmann PA (1979) Linear feedback via polynomial models. Int J Control 30: 363–377

    Article  MathSciNet  MATH  Google Scholar 

  7. Fuhrmann PA (1981) Duality in polynomial models with some applications to geometric control theory. IEEE Trans Autom Control AC-26: 284–295

    Article  MathSciNet  Google Scholar 

  8. Fuhrmann PA (1996) A polynomial approach to linear algebra. Springer, New York

    MATH  Google Scholar 

  9. Fuhrmann PA (2002) A study of behaviors. Linear Algebra Appl 351–352: 303–380

    Article  MathSciNet  Google Scholar 

  10. Fuhrmann PA (2003) A note on continuous behavior homomorphisms. Syst Control Lett 49: 359–363

    Article  MathSciNet  MATH  Google Scholar 

  11. Fuhrmann PA (2005) Autonomous subbehaviors and output nulling subspaces. Int J Control 78: 1378–1411

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuhrmann PA, Helmke U (2010) Unimodular equivalence of polynomial matrices. In: Hu X, Jonsson U, Wahlberg B, Ghosh B (eds) Three decades of progress in control sciences: dedicated to Chris Byrnes and Anders Lindquist. Springer, Berlin

    Google Scholar 

  13. Fuhrmann PA, Rapisarda P, Yamamoto Y (2007) On the state of behaviors. Linear Algebra Appl 424: 570–614

    Article  MathSciNet  MATH  Google Scholar 

  14. Fuhrmann PA, Willems JC (1979) Factorization indices at infinity for rational matrix functions. Integr Equ Oper Theory 2: 287–301

    Article  MathSciNet  MATH  Google Scholar 

  15. Gantmacher FR (1959) The theory of matrices, vol. I/II. Chelsea Publishing Company, New York

    Google Scholar 

  16. Kailath T (1980) Linear systems. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  17. Kalman RE (1971) Kronecker invariants and feedback. In: Proc Conf on ODEs Math Research Center, Naval Research Laboratory, Washington, DC

  18. Kronecker L (1980) Algebraische Reduktion der Scharen bilinearer Formen. S.-B. Akad, Berlin, pp 763–776

  19. Morse AS (1973) Structural invariants of linear multivariable systems. SIAM J Control 11: 446–465

    Article  MathSciNet  MATH  Google Scholar 

  20. Polderman JW, Willems JC (1997) Introduction to mathematical system theory. Springer, New York

    Google Scholar 

  21. Pugh AC, Karampetakis NP, Vardulakis AIG, Hayton GE (1994) A fundamental notion of equivalkence for linear multivariable systems. IEEE Trans Autom Control 39(5): 1141–1145

    Article  MathSciNet  MATH  Google Scholar 

  22. Pugh AC, Antoniou EN, Karampetakis NP (2007) Equivalence of AR-representations in the light of implusive-smooth behaviour. Int J Robust Nonlinear Control 17(8): 769–785

    Article  MathSciNet  Google Scholar 

  23. Rapisarda P, Willems JC (1991) State maps for linear systems. SIAM J Contr Optim 35: 1053–1091

    Article  MathSciNet  Google Scholar 

  24. Rosenbrock HH (1970) State-space and multivariable theory. Wiley, New York

    MATH  Google Scholar 

  25. Vardulakis AIG (1991) Linear multivariable control. Wiley, Chichester

    MATH  Google Scholar 

  26. Weierstrass K (1867) Zur Theorie der bilinearen und quadratischen Formen. Monatsh Akad Wiss, Berlin pp 310–338

  27. Willems JC (1986) From time series to linear systems. Part I: finite-dimensional linear time invariant systems. Automatica 22: 561–580

    Article  MathSciNet  MATH  Google Scholar 

  28. Willems JC (1989) Models for dynamics. In: Kirchgraber U, Walther HO (eds) Dynamics reported, vol. 2. Wiley, New York, pp 171–269

  29. Willems JC (1991) Paradigms and puzzles in the theory of dynamical systems. IEEE Trans Autom Control AC-36: 259–294

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Fuhrmann.

Additional information

P.A. Fuhrmann was partially supported by the ISF under Grant No. 1282/05. U. Helmke was partially supported by the DFG under Grant HE 1858/12-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrmann, P.A., Helmke, U. Equivalence conditions for behaviors and the Kronecker canonical form. Math. Control Signals Syst. 22, 267–293 (2011). https://doi.org/10.1007/s00498-011-0061-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-011-0061-z

Keywords

Navigation