Skip to main content
Log in

An ISS small gain theorem for general networks

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We provide a generalized version of the nonlinear small gain theorem for the case of more than two coupled input-to-state stable systems. For this result the interconnection gains are described in a nonlinear gain matrix, and the small gain condition requires bounds on the image of this gain matrix. The condition may be interpreted as a nonlinear generalization of the requirement that the spectral radius of the gain matrix is less than 1. We give some interpretations of the condition in special cases covering two subsystems, linear gains, linear systems and an associated lower-dimensional discrete time dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angeli D, Sontag E (2004) Interconnections of monotone systems with steady-state characteristics. In: Optimal control, stabilization and nonsmooth analysis, Lecture Notes in Control and Inform. Sci., vol. 301. Springer, Berlin, pp 135–154

  2. Angeli D, De Leenheer P and Sontag ED (2004). A small-gain theorem for almost global convergence of monotone systems. Syst Control Lett 52(5): 407–414

    Article  MATH  MathSciNet  Google Scholar 

  3. Berman A and Plemmons RJ (1979). Nonnegative matrices in the mathematical sciences. Academic [Harcourt Brace Jovanovich Publishers], New York

    MATH  Google Scholar 

  4. Dashkovskiy S, Rüffer BS, Wirth FR (2006a) Construction of ISS Lyapunov functions for networks. Tech. Rep. 06-06, Zentrum für Technomathematik, University of Bremen, Technical Report

  5. Dashkovskiy S, Rüffer BS, Wirth FR (2006b) Discrete time monotone systems: Criteria for global asymptotic stability and applications. In: Proceedings of the 17th international symposium on mathematical theory of networks and systems (MTNS), Kyoto, Japan, pp 89–97

  6. Dashkovskiy S, Rüffer BS, Wirth FR (2006c) Explicit ISS Lyapunov functions for networks (in preparation)

  7. Dashkovskiy S, Rüffer BS, Wirth FR (2006d) An ISS Lyapunov function for networks of ISS systems. In: Proceedings of the 17th international symposium on mathematical theory of networks and systems (MTNS), Kyoto, Japan, pp 77–82

  8. Enciso GA and Sontag ED (2006). Global attractivity, I/O monotone small-gain theorems and biological delay systems. Discrete Contin Dyn Syst 14(3): 549–578

    MATH  MathSciNet  Google Scholar 

  9. Grüne L (2002). Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Trans Automat Control 47(9): 1499–1504

    Article  MathSciNet  Google Scholar 

  10. Hahn W (1967). Stability of motion. Springer, New York

    MATH  Google Scholar 

  11. Horvath CD and Lassonde M (1997). Intersection of sets with n-connected unions. Proc Am Math Soc 125(4): 1209–1214

    Article  MATH  MathSciNet  Google Scholar 

  12. Jiang ZP and Wang Y (2001). Input-to-state stability for discrete-time nonlinear systems. Automatica J IFAC 37(6): 857–869

    Article  MATH  MathSciNet  Google Scholar 

  13. Jiang ZP, Teel AR and Praly L (1994). Small-gain theorem for ISS systems and applications. Math Control Signals Syst 7(2): 95–120

    Article  MATH  MathSciNet  Google Scholar 

  14. Jiang ZP, Mareels IMY and Wang Y (1996). A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica J IFAC 32(8): 1211–1215

    Article  MATH  MathSciNet  Google Scholar 

  15. Jiang ZP, Lin Y and Wang Y (2004). Nonlinear small-gain theorems for discrete-time feedback systems and applications. Automatica J IFAC 40(12): 2129–2136

    Article  MATH  MathSciNet  Google Scholar 

  16. Karow M, Hinrichsen D and Pritchard AJ (2006). Interconnected systems with uncertain couplings: Explicit formulae for mu-values, spectral value sets, and stability radii. SIAM J Control Optim 45(3): 856–884

    Article  MathSciNet  Google Scholar 

  17. Laila DS and Nešić D (2003). Discrete-time Lyapunov-based small-gain theorem for parameterized interconnected ISS systems. IEEE Trans Automat Control 48(10): 1783–1788

    Article  MathSciNet  Google Scholar 

  18. Lancaster P and Tismenetsky M (1985). The theory of matrices 2nd edn. Academic, Orlando

    MATH  Google Scholar 

  19. Lur YY (2005). On the asymptotic stability of nonnegative matrices in max algebra. Linear Algebra Appl 407: 149–161

    Article  MATH  MathSciNet  Google Scholar 

  20. Michel AN and Miller RK (1977). Qualitative analysis of large scale dynamical systems. Academic [Harcourt Brace Jovanovich Publishers], New York

    MATH  Google Scholar 

  21. Potrykus HG, Allgöwer F, Qin SJ (2003) The character of an idempotent-analytic nonlinear small gain theorem. In: Positive systems (Rome, 2003), Lecture Notes in Control and Inform. Sci., vol 294. Springer, Berlin, pp 361–368

  22. Rouche N, Habets P and Laloy M (1977). Stability theory by Liapunov’s direct method. Springer, New York

    MATH  Google Scholar 

  23. Šiljak DD (1979). Large-scale dynamic systems, North-Holland series in system science and engineering, vol.~3. North-Holland Publishing Co., New York

    Google Scholar 

  24. Sontag E and Teel A (1995). Changing supply functions in input/state stable systems. IEEE Trans Automat Control 40(8): 1476–1478

    Article  MATH  MathSciNet  Google Scholar 

  25. Sontag ED (1989). Smooth stabilization implies coprime factorization. IEEE Trans Automat Control 34(4): 435–443

    Article  MATH  MathSciNet  Google Scholar 

  26. Sontag ED (2001) The ISS philosophy as a unifying framework for stability-like behavior. In: Nonlinear control in the year 2000, vol. 2 (Paris), Lecture Notes in Control and Inform. Sci., vol 259. Springer, London, pp 443–467

  27. Sontag ED and Wang Y (1996). New characterizations of input-to-state stability. IEEE Trans Automat Control 41(9): 1283–1294

    Article  MATH  MathSciNet  Google Scholar 

  28. Szász G (1963) Introduction to lattice theory. Third revised and enlarged edition. MS revised by R. Wiegandt; translated by B. Balkay and G. Tóth, Academic, New York

  29. Teel AR (1996). A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans Automat Control 41(9): 1256–1270

    Article  MATH  MathSciNet  Google Scholar 

  30. Teel AR (1998). Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans Automat Control 43(7): 960–964

    Article  MATH  MathSciNet  Google Scholar 

  31. Teel AR (2005) Input-to-state stability and the nonlinear small gain theorem, private communication, 2005

  32. Vidyasagar M (1981) Input-output analysis of large-scale interconnected systems, Lecture Notes in Control and Information Sciences, vol. 29. Springer, Berlin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Dashkovskiy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dashkovskiy, S., Rüffer, B.S. & Wirth, F.R. An ISS small gain theorem for general networks. Math. Control Signals Syst. 19, 93–122 (2007). https://doi.org/10.1007/s00498-007-0014-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-007-0014-8

Keywords

Navigation