Regulation of gametangia and gametangiophore initiation in the liverwort Marchantia polymorpha

Abstract

Key message

The liverwort Marchantia polymorpha regulates gametangia and gametangiophore development by using evolutionarily conserved regulatory modules that are shared with angiosperm mechanisms regulating flowering and germ cell differentiation.

Abstract

Bryophytes, the earliest diverged lineage of land plants comprised of liverworts, mosses, and hornworts, produce gametes in gametangia, reproductive organs evolutionarily conserved but lost in extant angiosperms. Initiation of gametangium development is dependent on environmental factors such as light, although the underlying mechanisms remain elusive. Recent studies showed that the liverwort Marchantia polymorpha regulates development of gametangia and stalked receptacles called gametangiophores by using conserved regulatory modules which, in angiosperms, are involved in light signaling, microRNA-mediated flowering regulation, and germ cell differentiation. These findings suggest that these modules were acquired by a common ancestor of land plants before divergence of bryophytes, and were later recruited to flowering mechanism in angiosperms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309(5737):1052–1056. https://doi.org/10.1126/science.1115983

    CAS  Article  PubMed  Google Scholar 

  2. Abe M, Kosaka S, Shibuta M, Nagata K, Uemura T, Nakano A, Kaya H (2019) Transient activity of the florigen complex during the floral transition in Arabidopsis thaliana. Development. https://doi.org/10.1242/dev.171504

    Article  PubMed  Google Scholar 

  3. Alaba S, Piszczalka P, Pietrykowska H, Pacak AM, Sierocka I, Nuc PW, Singh K, Plewka P, Sulkowska A, Jarmolowski A, Karlowski WM, Szweykowska-Kulinska Z (2015) The liverwort Pellia endiviifolia shares microtranscriptomic traits that are common to green algae and land plants. New Phytol 206(1):352–367. https://doi.org/10.1111/nph.13220

    CAS  Article  PubMed  Google Scholar 

  4. Benson-Evans K (1961) Environmental factors and bryophytes. Nature 191(4785):255–260. https://doi.org/10.1038/191255a0

    Article  Google Scholar 

  5. Benson-Evans K (1964) Physiology of the reproduction of bryophytes. Bryologist 67(4):431–445. https://doi.org/10.2307/3240769

    Article  Google Scholar 

  6. Berger F, Twell D (2011) Germline specification and function in plants. Ann Rev Plant Biol 62(1):461–484. https://doi.org/10.1146/annurev-arplant-042110-103824

    CAS  Article  Google Scholar 

  7. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C, Aki SS, Althoff F, Araki T, Arteaga-Vazquez MA, Balasubrmanian S, Barry K, Bauer D, Boehm CR, Briginshaw L, Caballero-Perez J, Catarino B, Chen F, Chiyoda S, Chovatia M, Davies KM, Delmans M, Demura T, Dierschke T, Dolan L, Dorantes-Acosta AE, Eklund DM, Florent SN, Flores-Sandoval E, Fujiyama A, Fukuzawa H, Galik B, Grimanelli D, Grimwood J, Grossniklaus U, Hamada T, Haseloff J, Hetherington AJ, Higo A, Hirakawa Y, Hundley HN, Ikeda Y, Inoue K, Inoue S-i, Ishida S, Jia Q, Kakita M, Kanazawa T, Kawai Y, Kawashima T, Kennedy M, Kinose K, Kinoshita T, Kohara Y, Koide E, Komatsu K, Kopischke S, Kubo M, Kyozuka J, Lagercrantz U, Lin S-S, Lindquist E, Lipzen AM, Lu C-W, De Luna E, Martienssen RA, Minamino N, Mizutani M, Mizutani M, Mochizuki N, Monte I, Mosher R, Nagasaki H, Nakagami H, Naramoto S, Nishitani K, Ohtani M, Okamoto T, Okumura M, Phillips J, Pollak B, Reinders A, Rövekamp M, Sano R, Sawa S, Schmid MW, Shirakawa M, Solano R, Spunde A, Suetsugu N, Sugano S, Sugiyama A, Sun R, Suzuki Y, Takenaka M, Takezawa D, Tomogane H, Tsuzuki M, Ueda T, Umeda M, Ward JM, Watanabe Y, Yazaki K, Yokoyama R, Yoshitake Y, Yotsui I, Zachgo S, Schmutz J (2017) Insights into land plant evolution garnered from the Marchantia polymorpha Genome. Cell 171(2):287–304. https://doi.org/10.1016/j.cell.2017.09.030

    CAS  Article  PubMed  Google Scholar 

  8. Bowman JL, Sakakibara K, Furumizu C, Dierschke T (2016) Evolution in the cycles of life. Ann Rev Genet 50:133–154. https://doi.org/10.1146/annurev-genet-120215-035227

    CAS  Article  PubMed  Google Scholar 

  9. Catarino B, Hetherington AJ, Emms DM, Kelly S, Dolan L (2016) The stepwise increase in the number of transcription factor families in the precambrian predated the diversification of plants on land. Mol Biol Evol 33(11):2815–2819. https://doi.org/10.1093/molbev/msw155

    CAS  Article  PubMed  Google Scholar 

  10. Chiyoda S, Ishizaki K, Kataoka H, Yamato KT, Kohchi T (2008) Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27(9):1467–1473. https://doi.org/10.1007/s00299-008-0570-5

    CAS  Article  PubMed  Google Scholar 

  11. Cho SH, Coruh C, Axtell MJ (2012) miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens. Plant Cell 24(12):4837–4849. https://doi.org/10.1105/tpc.112.103176

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Durand EJ (1908) The development of the sexual organs and sporogonium of Marchantia polymorpha. Bull Torrey Bot Club 35(7):321–335. https://doi.org/10.2307/2485335

    Article  Google Scholar 

  13. Finet C, Berne-Dedieu A, Scutt CP, Marletaz F (2013) Evolution of the ARF gene family in land plants: old domains, new tricks. Mol Biol Evol 30(1):45–56. https://doi.org/10.1093/molbev/mss220

    CAS  Article  PubMed  Google Scholar 

  14. Flores-Sandoval E, Eklund DM, Bowman JL (2015) A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet 11(5):e1005207. https://doi.org/10.1371/journal.pgen.1005207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Flores-Sandoval E, Eklund DM, Hong SF, Alvarez JP, Fisher TJ, Lampugnani ER, Golz JF, Vazquez-Lobo A, Dierschke T, Lin SS, Bowman JL (2018a) Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol. https://doi.org/10.1111/nph.15090

    Article  PubMed  Google Scholar 

  16. Flores-Sandoval E, Romani F, Bowman JL (2018b) Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front Plant Sci 9:1345. https://doi.org/10.3389/fpls.2018.01345

    Article  PubMed  PubMed Central  Google Scholar 

  17. Galvao VC, Fiorucci AS, Trevisan M, Franco-Zorilla JM, Goyal A, Schmid-Siegert E, Solano R, Fankhauser C (2019) PIF transcription factors link a neighbor threat cue to accelerated reproduction in Arabidopsis. Nat Commun 10(1):4005. https://doi.org/10.1038/s41467-019-11882-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Genau AC, Li Z, Renzaglia KS, Fernandez Pozo N, Nogué F, Haas FB, Wilhelmsson PKI, Ullrich KK, Schreiber M, Meyberg R, Grosche C, Rensing SA (2021) HAG1 and SWI3A/B control of male germ line development in P. patens suggests conservation of epigenetic reproductive control across land plants. Plant Reprod 34(2):149–173. https://doi.org/10.1007/s00497-021-00409-0

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harrison CJ (2017) Development and genetics in the evolution of land plant body plans. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2015.0490

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hedman H, Kallman T, Lagercrantz U (2009) Early evolution of the MFT-like gene family in plants. Plant Mol Biol 70(4):359–369. https://doi.org/10.1007/s11103-009-9478-x

    CAS  Article  PubMed  Google Scholar 

  21. Higo A, Kawashima T, Borg M, Zhao M, Lopez-Vidriero I, Sakayama H, Montgomery SA, Sekimoto H, Hackenberg D, Shimamura M, Nishiyama T, Sakakibara K, Tomita Y, Togawa T, Kunimoto K, Osakabe A, Suzuki Y, Yamato KT, Ishizaki K, Nishihama R, Kohchi T, Franco-Zorrilla JM, Twell D, Berger F, Araki T (2018) Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nat Commun 9(1):5283. https://doi.org/10.1038/s41467-018-07728-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Higo A, Niwa M, Yamato KT, Yamada L, Sawada H, Sakamoto T, Kurata T, Shirakawa M, Endo M, Shigenobu S, Yamaguchi K, Ishizaki K, Nishihama R, Kohchi T, Araki T (2016) Transcriptional framework of male gametogenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 57(2):325–338. https://doi.org/10.1093/pcp/pcw005

    CAS  Article  PubMed  Google Scholar 

  23. Hisanaga T, Yamaoka S, Kawashima T, Higo A, Nakajima K, Araki T, Kohchi T, Berger F (2019) Building new insights in plant gametogenesis from an evolutionary perspective. Nat Plants 5:663–669. https://doi.org/10.1038/s41477-019-0466-0

    Article  PubMed  Google Scholar 

  24. Hohe A, Rensing SA, Mildner M, Lang D, Reski R (2002) Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol 2:595–602. https://doi.org/10.1055/s-2002-35440

  25. Holm K, Källman T, Gyllenstrand N, Hedman H, Lagercrantz U (2010) Does the core circadian clock in the moss Physcomitrella patens (Bryophyta) comprise a single loop? BMC Plant Biol 10:109. https://doi.org/10.1186/1471-2229-10-109

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Hyun Y, Richter R, Coupland G (2017) Competence to flower: age-controlled sensitivity to environmental cues. Plant Physiol 173(1):36–46. https://doi.org/10.1104/pp.16.01523

    CAS  Article  PubMed  Google Scholar 

  27. Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309(5732):293–297. https://doi.org/10.1126/science.1110586

    CAS  Article  PubMed  Google Scholar 

  28. Inoue K, Nishihama R, Araki T, Kohchi T (2019) Reproductive induction is a far-red high irradiance response that is mediated by phytochrome and PHYTOCHROME INTERACTING FACTOR in Marchantia polymorpha. Plant Cell Physiol 60(5):1136–1145. https://doi.org/10.1093/pcp/pcz029

    CAS  Article  PubMed  Google Scholar 

  29. Inoue K, Nishihama R, Kataoka H, Hosaka M, Manabe R, Nomoto M, Tada Y, Ishizaki K, Kohchi T (2016) Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort Marchantia polymorpha. Plant Cell 28(6):1406–1421. https://doi.org/10.1105/tpc.15.01063

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Inoue K, Nishihama R, Kohchi T (2017) Evolutionary origin of phytochrome responses and signaling in land plants. Plant Cell Environ 40(11):2502–2508. https://doi.org/10.1111/pce.12908

    CAS  Article  PubMed  Google Scholar 

  31. Karlgren A, Gyllenstrand N, Källman T, Lagercrantz U (2013) Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst). PLoS ONE 8(3):e60110. https://doi.org/10.1371/journal.pone.0060110

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Kato H, Ishizaki K, Kouno M, Shirakawa M, Bowman JL, Nishihama R, Kohchi T (2015) Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha. PLoS Genet 11(5):e1005084. https://doi.org/10.1371/journal.pgen.1005084

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Kato H, Mutte SK, Suzuki H, Crespo I, Das S, Radoeva T, Fontana M, Yoshitake Y, Hainiwa E, van den Berg W, Lindhoud S, Ishizaki K, Hohlbein J, Borst JW, Boer DR, Nishihama R, Kohchi T, Weijers D (2020) Design principles of a minimal auxin response system. Nat Plants 6(5):473–482. https://doi.org/10.1038/s41477-020-0662-y

    CAS  Article  PubMed  Google Scholar 

  34. Kofuji R, Hasebe M (2014) Eight types of stem cells in the life cycle of the moss Physcomitrella patens. Curr Opin Plant Biol 17:13–21. https://doi.org/10.1016/j.pbi.2013.10.007

    Article  PubMed  Google Scholar 

  35. Kofuji R, Yagita Y, Murata T, Hasebe M (2018) Antheridial development in the moss Physcomitrella patens: implications for understanding stem cells in mosses. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0494

    Article  PubMed  Google Scholar 

  36. Koi S, Hisanaga T, Sato K, Shimamura M, Yamato KT, Ishizaki K, Kohchi T, Nakajima K (2016) An evolutionarily conserved plant RKD factor controls germ cell differentiation. Curr Biol 26:1775–1781. https://doi.org/10.1016/j.cub.2016.05.013

    CAS  Article  PubMed  Google Scholar 

  37. Koshimizu S, Kofuji R, Sasaki-Sekimoto Y, Kikkawa M, Shimojima M, Ohta H, Shigenobu S, Kabeya Y, Hiwatashi Y, Tamada Y, Murata T, Hasebe M (2018) Physcomitrella MADS-box genes regulate water supply and sperm movement for fertilization. Nat Plants 4(1):36–45. https://doi.org/10.1038/s41477-017-0082-9

    CAS  Article  PubMed  Google Scholar 

  38. Kubota A, Kita S, Ishizaki K, Nishihama R, Yamato KT, Kohchi T (2014) Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nat Commun 5:3668. https://doi.org/10.1038/ncomms4668

    CAS  Article  PubMed  Google Scholar 

  39. Kumar SV, Lucyshyn D, Jaeger KE, Alós E, Alvey E, Harberd NP, Wigge PA (2012) Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484:242. https://doi.org/10.1038/nature10928

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Lagercrantz U, Billhardt A, Rousku SN, Ljung K, Eklund DM (2020) Nyctinastic thallus movement in the liverwort Marchantia polymorpha is regulated by a circadian clock. Sci Rep 10(1):8658. https://doi.org/10.1038/s41598-020-65372-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Landberg K, Pederson ER, Viaene T, Bozorg B, Friml J, Jonsson H, Thelander M, Sundberg E (2013) The moss Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. Plant Physiol 162(3):1406–1419. https://doi.org/10.1104/pp.113.214023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Landberg K, Šimura J, Ljung K, Sundberg E, Thelander M (2021) Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control. New Phytol 229:845–860. https://doi.org/10.1111/nph.16914

    CAS  Article  PubMed  Google Scholar 

  43. Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16(1):19–28. https://doi.org/10.1016/j.tplants.2010.08.003

    CAS  Article  PubMed  Google Scholar 

  44. Li FW, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW, Wong GK, Pryer KM, Mathews S (2015) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun 6:7852. https://doi.org/10.1038/ncomms8852

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Linde AM, Eklund DM, Kubota A, Pederson ERA, Holm K, Gyllenstrand N, Nishihama R, Cronberg N, Muranaka T, Oyama T, Kohchi T, Lagercrantz U (2017) Early evolution of the land plant circadian clock. New Phytol 216(2):576–590. https://doi.org/10.1111/nph.14487

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Morea EG, da Silva EM, e Silva GF, Valente GT, Barrera Rojas CH, Vincentz M, Nogueira FT (2016) Functional and evolutionary analyses of the miR156 and miR529 families in land plants. BMC Plant Biol 16:40. https://doi.org/10.1186/s12870-016-0716-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19(4):374–378. https://doi.org/10.1016/j.gde.2009.06.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Preston J, Hileman L (2013) Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00080

    Article  PubMed  PubMed Central  Google Scholar 

  49. Putterill J, Varkonyi-Gasic E (2016) FT and florigen long-distance flowering control in plants. Curr Opin Plant Biol 33:77–82. https://doi.org/10.1016/j.pbi.2016.06.008

    CAS  Article  PubMed  Google Scholar 

  50. Rausenberger J, Tscheuschler A, Nordmeier W, Wust F, Timmer J, Schafer E, Fleck C, Hiltbrunner A (2011) Photoconversion and nuclear trafficking cycles determine phytochrome A’s response profile to far-red light. Cell 146(5):813–825. https://doi.org/10.1016/j.cell.2011.07.023

    CAS  Article  PubMed  Google Scholar 

  51. Rövekamp M, Bowman JL, Grossniklaus U (2016) Marchantia MpRKD regulates the gametophyte-sporophyte transition by keeping egg cells quiescent in the absence of fertilization. Curr Biol 26:1782–1789. https://doi.org/10.1016/j.cub.2016.05.028

    CAS  Article  PubMed  Google Scholar 

  52. Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318(5848):261–265. https://doi.org/10.1126/science.1146994

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Shimamura M (2016) Marchantia polymorpha : taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol 57(2):230–256. https://doi.org/10.1093/pcp/pcv192

    CAS  Article  PubMed  Google Scholar 

  54. Sierocka I, Alaba S, Jarmolowski A, Karlowski WM, Szweykowska-Kulinska Z (2020) The identification of differentially expressed genes in male and female gametophytes of simple thalloid liverwort Pellia endiviifolia sp. B using an RNA-seq approach. Planta 252(2):21. https://doi.org/10.1007/s00425-020-03424-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Ann Rev Plant Biol 66:441–464. https://doi.org/10.1146/annurev-arplant-043014-115555

    CAS  Article  Google Scholar 

  56. Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336(6084):1045–1049. https://doi.org/10.1126/science.1219644

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410(6832):1116–1120. https://doi.org/10.1038/35074138

    CAS  Article  PubMed  Google Scholar 

  58. Tsuzuki M, Futagami K, Shimamura M, Inoue C, Kunimoto K, Oogami T, Tomita Y, Inoue K, Kohchi T, Yamaoka S, Araki T, Hamada T, Watanabe Y (2019) An early arising role of the MicroRNA156/529-SPL module in reproductive development revealed by the liverwort Marchantia polymorpha. Curr Biol 29(19):3307-3314.e5. https://doi.org/10.1016/j.cub.2019.07.084

    CAS  Article  PubMed  Google Scholar 

  59. Tsuzuki M, Nishihama R, Ishizaki K, Kurihara Y, Matsui M, Bowman JL, Kohchi T, Hamada T, Watanabe Y (2016) Profiling and Characterization of Small RNAs in the Liverwort, Marchantia polymorpha, Belonging to the First Diverged Land Plants. Plant Cell Physiol 57(2):359–372. https://doi.org/10.1093/pcp/pcv182

    CAS  Article  PubMed  Google Scholar 

  60. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303(5660):1003–1006. https://doi.org/10.1126/science.1091761

    CAS  Article  PubMed  Google Scholar 

  61. Voth PD, Hamner KC (1940) Responses of Marchantia polymorpha to Nutrient Supply and Photoperiod. Bot Gaz 102(1):169–205. https://doi.org/10.1086/334943

    CAS  Article  Google Scholar 

  62. Wang JW (2014) Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot 65(17):4723–4730. https://doi.org/10.1093/jxb/eru246

    CAS  Article  PubMed  Google Scholar 

  63. Wann FB (1925) Some of the factors involved in the sexual reproduction of Marchantia polymorpha. Am J Bot 12(6):307–318. https://doi.org/10.1002/j.1537-2197.1925.tb05836.x

    Article  Google Scholar 

  64. Wickland DP, Hanzawa Y (2015) The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms. Mol Plant 8(7):983–997. https://doi.org/10.1016/j.molp.2015.01.007

    CAS  Article  PubMed  Google Scholar 

  65. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309(5737):1056–1059. https://doi.org/10.1126/science.1114358

    CAS  Article  PubMed  Google Scholar 

  66. Yamaoka S, Nishihama R, Yoshitake Y, Ishida S, Inoue K, Saito M, Okahashi K, Bao H, Nishida H, Yamaguchi K, Shigenobu S, Ishizaki K, Yamato KT, Kohchi T (2018) Generative cell specification requires transcription factors evolutionarily conserved in land plants. Curr Biol 28(3):479-486.e475. https://doi.org/10.1016/j.cub.2017.12.053

    CAS  Article  PubMed  Google Scholar 

  67. Yamaoka S, Takenaka M, Hanajiri T, Shimizu-Ueda Y, Nishida H, Yamato KT, Fukuzawa H, Ohyama K (2004) A mutant with constitutive sexual organ development in Marchantia polymorpha L. Sex Plant Reprod 16(5):253–257. https://doi.org/10.1007/s00497-003-0195-3

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by MEXT/JSPS KAKENHI grants JP20H05780, JP19H04860, JP18K06285 (to S.Y.), JP20K15818 (to K.I.), JP19H03244, and 25113005 (to T.A.). S.Y. is also supported by Takeda Science Foundation and Asahi Glass Foundation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shohei Yamaoka or Takashi Araki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Frederic Berger.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamaoka, S., Inoue, K. & Araki, T. Regulation of gametangia and gametangiophore initiation in the liverwort Marchantia polymorpha. Plant Reprod (2021). https://doi.org/10.1007/s00497-021-00419-y

Download citation

Keywords

  • Gametangium
  • Gametangiophore
  • Light signaling
  • microRNA
  • Germ cell
  • Marchantia polymorpha