Intracellular dynamics and transcriptional regulations in plant zygotes: a case study of Arabidopsis

Abstract

Key message

Recent understandings ofArabidopsiszygote.

Abstract

Body axis formation is essential for the proper development of multicellular organisms. The apical-basal axis in Arabidopsis thaliana is determined by the asymmetric division of the zygote, following its cellular polarization. However, the regulatory mechanism of zygote polarization is unclear due to technical issues. The zygote is located deep in the seed (ovule) in flowers, which prevents the living dynamics of zygotes from being observed. In addition, elucidation of molecular pathways by conventional forward genetic screens was not enough because of high gene redundancy in early development. Here, we present a review introducing two new methods, which have been developed to overcome these problems. Method 1: the two-photon live-cell imaging method provides a new system to visualize the dynamics of intracellular structures in Arabidopsis zygotes, such as cytoskeletons and vacuoles. Microtubules form transverse rings and control zygote elongation, while vacuoles dynamically change their shapes along longitudinal actin filaments and support polar nuclear migration. Method 2: the transcriptome method uses isolated Arabidopsis zygotes and egg cells to reveal the gene expression profiles before and after fertilization. This approach revealed that de novo transcription occurs extensively and immediately after fertilization. Moreover, inhibition of the de novo transcription was shown to sufficiently block the zygotic division, thus indicating a strong possibility that yet unidentified zygote regulators can be found using this transcriptome approach. These new strategies in Arabidopsis will help to further our understanding of the fundamental principles regarding the proper formation of plant bodies from unicellular zygotes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abiko M, Maeda H, Tamura K et al (2013) Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or downregulated genes in zygotes after fertilization. J Exp Bot 64:1927–1940. https://doi.org/10.1093/jxb/ert054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Autran D, Baroux C, Raissig MT et al (2011) Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145:707–719. https://doi.org/10.1016/j.cell.2011.04.014

    CAS  Article  PubMed  Google Scholar 

  3. Babu Y, Musielak T, Henschen A, Bayer M (2013) Suspensor length determines developmental progression of the embryo in Arabidopsis. Plant Physiol 162:1448–1458. https://doi.org/10.1104/pp.113.217166

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bayer M, Nawy T, Giglione C et al (2009) Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485–1488. https://doi.org/10.1126/science.1167784

    CAS  Article  PubMed  Google Scholar 

  5. Braun M, Baluška F, von Witsch M, Menzel D (1999) Redistribution of actin, profilin and phosphatidylinositol-4,5-bisphosphate in growing and maturing root hairs. Planta 209:435–443. https://doi.org/10.1007/s004250050746

    CAS  Article  PubMed  Google Scholar 

  6. Breuninger H, Rikirsch E, Hermann M et al (2008) Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis Embryo. Dev Cell 14:867–876. https://doi.org/10.1016/j.devcel.2008.03.008

    CAS  Article  PubMed  Google Scholar 

  7. Chakrabortty B, Willemsen V, de Zeeuw T et al (2018) A plausible microtubule-based mechanism for cell division orientation in plant embryogenesis. Curr Biol 28:3031.e2–3043.e2. https://doi.org/10.1016/j.cub.2018.07.025

    CAS  Article  Google Scholar 

  8. Chen J, Strieder N, Krohn NG et al (2017) Zygotic genome activation occurs shortly after fertilization in maize. Plant Cell 29:2106–2125. https://doi.org/10.1105/tpc.17.00099

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Kalinowska K, Müller B et al (2018) DiSUMO-LIKE Interacts with RNA-binding proteins and affects cell-cycle progression during maize embryogenesis. Curr Biol 28:1548.e5–1560.e5. https://doi.org/10.1016/j.cub.2018.03.066

    CAS  Article  Google Scholar 

  10. Del Toro-De León G, García-Aguilar M, Gillmor SC (2014) Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 514:624–627. https://doi.org/10.1038/nature13620

    CAS  Article  PubMed  Google Scholar 

  11. Dolzblasz A, Nardmann J, Clerici E et al (2016) Stem cell regulation by Arabidopsis WOX genes. Mol Plant 9:1028–1039. https://doi.org/10.1016/j.molp.2016.04.007

    CAS  Article  PubMed  Google Scholar 

  12. Faure J, Rotman N, Fortuné P, Dumas C (2002) Fertilization in Arabidopsis thaliana wild type: developmental stages and time course. Plant J 30:481–488. https://doi.org/10.1046/j.1365-313X.2002.01305.x

    Article  PubMed  Google Scholar 

  13. Goodner B, Quatrano RS (1993) Fucus embryogenesis: a model to study the establishment of polarity. Plant Cell 5:1471–1481. https://doi.org/10.1105/tpc.5.10.1471

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gooh K, Ueda M, Aruga K et al (2015) Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Dev Cell 34:242–251. https://doi.org/10.1016/j.devcel.2015.06.008

    CAS  Article  PubMed  Google Scholar 

  15. Gu Y, Vernoud V, Fu Y, Yang Z (2003) ROP GTPase regulation of pollen tube growth through the dynamics of tip-localized F-actin. J Exp Bot 54:93–101. https://doi.org/10.1093/jxb/erg035

    CAS  Article  PubMed  Google Scholar 

  16. Huang J, Liu H, Chen M et al (2014) ROP3 GTPase contributes to polar auxin transport and auxin responses and is important for embryogenesis and seedling growth in Arabidopsis. Plant Cell 26:3501–3518. https://doi.org/10.1105/tpc.114.127902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Ishimoto K, Sohonahra S, Kishi-Kaboshi M et al (2019) Specification of basal region identity after asymmetric zygotic division requires mitogen-activated protein kinase 6 in rice. Development 146:dev176305. https://doi.org/10.1242/dev.176305

    CAS  Article  PubMed  Google Scholar 

  18. Itoh J, Nonomura K, Ikeda K et al (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47. https://doi.org/10.1093/pcp/pci501

    CAS  Article  PubMed  Google Scholar 

  19. Jürgens G (1995) Axis formation in plant embryogenesis: cues and clues. Cell 81:467–470. https://doi.org/10.1016/0092-8674(95)90065-9

    Article  PubMed  Google Scholar 

  20. Kao P, Nodine MD (2019) Transcriptional activation of Arabidopsis zygotes is required for initial cell divisions. Sci Rep 9:17159. https://doi.org/10.1038/s41598-019-53704-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Kato T, Morita M, Fukaki H et al (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46. https://doi.org/10.1105/tpc.010215

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Ketelaar T, Faivre-Moskalenko C, Esseling JJ et al (2002) Positioning of nuclei in Arabidopsis root hairs an actin-regulated process of tip growth. Plant Cell 14:2941–2955. https://doi.org/10.1105/tpc.005892

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Kimata Y, Higaki T, Kawashima T et al (2016) Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote. Proc Natl Acad Sci 113:14157–14162. https://doi.org/10.1073/pnas.1613979113

    CAS  Article  PubMed  Google Scholar 

  24. Kimata Y, Kato T, Higaki T et al (2019) Polar vacuolar distribution is essential for accurate asymmetric division of Arabidopsis zygotes. Proc Natl Acad Sci 116:2338–2343. https://doi.org/10.1073/pnas.1814160116

    CAS  Article  PubMed  Google Scholar 

  25. Krüger F, Schumacher K (2018) Pumping up the volume—vacuole biogenesis in Arabidopsis thaliana. Semin Cell Dev Biol 80:106–112. https://doi.org/10.1016/j.semcdb.2017.07.008

    Article  PubMed  Google Scholar 

  26. Kurihara D, Kimata Y, Higashiyama T, Ueda M (2017) In vitro ovule cultivation for live-cell imaging of zygote polarization and embryo patterning in Arabidopsis thaliana. J Vis Exp. https://doi.org/10.3791/55975

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kuroiwa H, Nishimura Y, Higashiyama T, Kuroiwa T (2002) Pelargonium embryogenesis: cytological investigations of organelles in early embryogenesis from the egg to the two-celled embryo. Sex Plant Reprod 15:1–12. https://doi.org/10.1007/s00497-002-0139-3

    Article  Google Scholar 

  28. Liao C-Y, Weijers D (2018) A toolkit for studying cellular reorganization during early Arabidopsis thaliana embryogenesis. Plant J 93:963–976. https://doi.org/10.1111/tpj.13841

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Lukowitz W, Roeder A, Parmenter D, Somerville C (2004) A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109–119. https://doi.org/10.1016/S0092-8674(03)01067-5

    CAS  Article  PubMed  Google Scholar 

  30. Mansfield S, Briarty L (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can J Bot 69:461–476. https://doi.org/10.1139/b91-063

    Article  Google Scholar 

  31. Mansfield S, Briarty L, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 69:447–460. https://doi.org/10.1139/b91-062

    Article  Google Scholar 

  32. Mizuta Y, Kurihara D, Higashiyama T (2015) Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues. Protoplasma 252:1231–1240. https://doi.org/10.1007/s00709-014-0754-5

    CAS  Article  PubMed  Google Scholar 

  33. Möller BK, ten Hove CA, Xiang D et al (2017) Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo. Proc Natl Acad Sci 114:E2533–E2539. https://doi.org/10.1073/pnas.1616493114

    CAS  Article  PubMed  Google Scholar 

  34. Murata T, Kadota A, Hogetsu T, Wada M (1987) Circular arrangement of cortical microtubules around the subapical part of a tip-growing fern protonema. Protoplasma 141:135–138. https://doi.org/10.1007/BF01272895

    Article  Google Scholar 

  35. Neu A, Eilbert E, Asseck LY et al (2019) Constitutive signaling activity of a receptor-associated protein links fertilization with embryonic patterning in Arabidopsis thaliana. Proc Natl Acad Sci 116:5795–5804. https://doi.org/10.1073/pnas.1815866116

    CAS  Article  PubMed  Google Scholar 

  36. Niklas KJ, Cobb ED, Kutschera U (2016) Haeckel’s biogenetic law and the land plant phylotypic stage. BioScience 66:510–519. https://doi.org/10.1093/biosci/biw029

    Article  Google Scholar 

  37. Nodine MD, Bartel DP (2012) Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482:94–97. https://doi.org/10.1038/nature10756

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Palovaara J, Saiga S, Wendrich JR et al (2017) Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo. Nat Plants 3:894–904. https://doi.org/10.1038/s41477-017-0035-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Robert HS, Park C, Gutièrrez C et al (2018) Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nat Plants 4:548–553. https://doi.org/10.1038/s41477-018-0204-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Sato A, Toyooka K, Okamoto T (2010) Asymmetric cell division of rice zygotes located in embryo sac and produced by in vitro fertilization. Sex Plant Reprod 23:211–217. https://doi.org/10.1007/s00497-009-0129-9

    Article  PubMed  Google Scholar 

  41. Scheuring D, Löfke C, Krüger F et al (2016) Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc Natl Acad Sci 113:452–457. https://doi.org/10.1073/pnas.1517445113

    CAS  Article  PubMed  Google Scholar 

  42. Schon MA, Nodine MD (2017) Widespread contamination of arabidopsis embryo and endosperm transcriptome data sets. Plant Cell 29:608–617. https://doi.org/10.1105/tpc.16.00845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Schulz R, Jensen WA (1968) Capsella embryogenesis: the egg, zygote, and young embryo. Am J Bot 55:807–819. https://doi.org/10.1002/j.1537-2197.1968.tb07438.x

    Article  Google Scholar 

  44. Sivaramakrishna D (1978) Size relationships of apical cell and basal cell in two-celled embryos in angiosperms. Can J Bot 56:1434–1438. https://doi.org/10.1139/b78-166

    Article  Google Scholar 

  45. Smit ME, Weijers D (2015) The role of auxin signaling in early embryo pattern formation. Curr Opin Plant Biol 28:99–105. https://doi.org/10.1016/j.pbi.2015.10.001

    CAS  Article  PubMed  Google Scholar 

  46. Tian J, Han L, Feng Z et al (2015) Orchestration of microtubules and the actin cytoskeleton in trichome cell shape determination by a plant-unique kinesin. eLife 4:e09351. https://doi.org/10.7554/eLife.09351

    Article  PubMed Central  Google Scholar 

  47. Toyota M, Ikeda N, Sawai-Toyota S et al (2013) Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope. Plant J 76:648–660. https://doi.org/10.1111/tpj.12324

    CAS  Article  PubMed  Google Scholar 

  48. Ueda M, Zhang Z, Laux T (2011) Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development. Dev Cell 20:264–270. https://doi.org/10.1016/j.devcel.2011.01.009

    CAS  Article  PubMed  Google Scholar 

  49. Ueda M, Aichinger E, Gong W et al (2017) Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote. Genes Dev 31:617–627. https://doi.org/10.1101/gad.292409.116

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. van Dop M, Fiedler M, Mutte S et al (2020) DIX domain polymerization drives assembly of plant cell polarity complexes. Cell 180:427.e12–439.e12. https://doi.org/10.1016/j.cell.2020.01.011

    CAS  Article  Google Scholar 

  51. Vidali L, Rounds CM, Hepler PK, Bezanilla M (2009) Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS ONE 4:e5744. https://doi.org/10.1371/journal.pone.0005744

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Wang H, Ngwenyama N, Liu Y et al (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73. https://doi.org/10.1105/tpc.106.048298

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Webb MC, Gunning BE (1991) The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in Arabidopsis thaliana (L.) Heynh. Planta 184:187–195. https://doi.org/10.1007/BF00197947

    Article  PubMed  Google Scholar 

  54. Xiao W, Custard KD, Brown RC et al (2006) DNA methylation is critical for Arabidopsis embryogenesis and seed viability. Plant Cell 18:805–814. https://doi.org/10.1105/tpc.105.038836

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Yang Z (2008) Cell polarity signaling in Arabidopsis. Annu Rev Cell Dev Biol 24:551–575. https://doi.org/10.1146/annurev.cellbio.23.090506.123233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Yoshida S, van der Schuren A, van Dop M et al (2019) A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis. Nat Plants 5:160–166. https://doi.org/10.1038/s41477-019-0363-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang M, Wu H, Su J et al (2017) Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. Plant J 92:1005–1019. https://doi.org/10.1111/tpj.13737

    CAS  Article  PubMed  Google Scholar 

  58. Zhao J, Xin H, Qu L et al (2013) Dynamic changes of transcript profiles after fertilization are associated with de novo transcription and maternal elimination in tobacco zygote, and mark the onset of the maternal-to-zygotic transition. Plant J 65:131–145. https://doi.org/10.1111/j.1365-313X.2010.04403.x

    CAS  Article  Google Scholar 

  59. Zhao P, Zhou X, Shen K et al (2019) Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Dev Cell 49:882.e5–893.e5. https://doi.org/10.1016/j.devcel.2019.04.016

    CAS  Article  Google Scholar 

  60. Zheng J, Han SW, Rodriguez-Welsh MF, Rojas-Pierce M (2014) Homotypic vacuole fusion requires VTI11 and is regulated by phosphoinositides. Mol Plant 7:1026–1040. https://doi.org/10.1093/mp/ssu019

    CAS  Article  PubMed  Google Scholar 

  61. Zhou X, Shi C, Zhao P, Sun M (2018) Isolation of living apical and basal cell lineages of early proembryos for transcriptome analysis. Plant Reprod 32:105–111. https://doi.org/10.1007/s00497-018-00353-6

    CAS  Article  PubMed  Google Scholar 

  62. Zhou X, Liu Z, Shen K et al (2020) Cell lineage-specific transcriptome analysis for interpreting cell fate specification of proembryos. Nat Commun 11:1366. https://doi.org/10.1038/s41467-020-15189-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We received funding supports from Japanese Society for the Promotion of Science: Grant-in-Aid for JSPS Research Fellow (19J30006 for Y.K.), Grant-in-Aid for Scientific Research on Innovative Areas (19H05676 and 19H05670 for M.U.), Grant-in-Aid for Scientific Research (B, 19H03243 for M.U.), and Grant-in-Aid for Challenging Exploratory Research (19K22421 for M.U.). We would like to thank Editage (www.editage.com) for English language editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Minako Ueda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Thomas Dresselhaus.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kimata, Y., Ueda, M. Intracellular dynamics and transcriptional regulations in plant zygotes: a case study of Arabidopsis. Plant Reprod 33, 89–96 (2020). https://doi.org/10.1007/s00497-020-00389-7

Download citation

Keywords

  • Arabidopsis thaliana
  • Axis formation
  • Zygote
  • Live-cell imaging
  • Transcriptome