Advertisement

Plant Reproduction

, Volume 30, Issue 4, pp 179–184 | Cite as

Advances in understanding the molecular mechanisms of cytoplasmic male sterility and restoration in rice

  • Huiwu Tang
  • Yongyao Xie
  • Yao-Guang Liu
  • Letian Chen
Original Article

Abstract

Cytoplasmic male sterility (CMS) in plants is a male reproductive defect determined by mitochondrial genes and inherited maternally. CMS can be suppressed by nuclear restorer of fertility (Rf) genes. Therefore, CMS/Rf systems provide a classic model for the study of mitochondrial–nuclear interactions in plants. Moreover, CMS/Rf systems are economical, effective tools for the production of hybrid seeds. For example, CMS/Rf systems have been applied in over forty countries to breed hybrid rice (Oryza sativa L.) with improved yields due to hybrid vigor. The production of hybrid rice mainly depends on three types of CMS systems, namely Wild-Abortive type CMS (CMS-WA), Hong-Lian type CMS (CMS-HL) and Boro II type CMS (CMS-BT). Understanding the molecular mechanisms underlying these CMS/Rf systems will help us to understand mitochondrial–nuclear interactions, and accelerate the utilization of heterosis for improvement in yield. In the past decades, research benefitting from the availability of the high-quality, annotated mitochondrial and nuclear genome sequences of rice has isolated many CMS genes, identified the cognate nuclear Rf genes and studied the molecular mechanisms underlying CMS and restoration in rice. Here, we focus on recent advances in studies of the three major CMS/Rf systems in rice and discuss the key issues facing basic research and application of CMS/Rf systems in the future.

Keywords

Rice Cytoplasmic male sterility Mitochondrial–nuclear interactions Pentatricopeptide repeat protein Restorer gene 

Notes

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2016YFD0100804), the National Natural Science Foundation of China (31471564, 31600977) and the Key Research Program of Guangzhou Science Technology and Innovation Commission (201707020016).

References

  1. Ahmadikhah A, Karlov GI (2006) Molecular mapping of the fertility-restoration gene Rf4 for WA-cytoplasmic male sterility in rice. Plant Breed 125:363–367CrossRefGoogle Scholar
  2. Akagi H, Sakamoto M, Shinjyo C, Shimada H, Fujimura T (1994) A unique sequence located downstream from the rice mitochondrial atp6 may cause male sterility. Curr Genet 25:52–58CrossRefPubMedGoogle Scholar
  3. Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442CrossRefPubMedGoogle Scholar
  4. Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23:81–90CrossRefPubMedGoogle Scholar
  6. Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65:579–606CrossRefPubMedGoogle Scholar
  7. Chen L, Liu YG (2016) Discovery, utilization and molecular mechanisms of CMS-WA in rice. Chin Sci Bull 61:3804–3812CrossRefGoogle Scholar
  8. Cheng SH, Zhuang JY, Fan YY, Du JH, Cao LY (2007) Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100:959–966CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cui XQ, Wise RP, Schnable PS (1996) The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272:1334–1336CrossRefPubMedGoogle Scholar
  10. Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109:2654–2659CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X, Xiao J, Meyersb BC, Zhang Q (2016) PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA 113:15144–15149CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fujii S, Toriyama K (2009) Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA 106:9513–9518CrossRefPubMedPubMedCentralGoogle Scholar
  13. Guo J, Liu YG (2017) Long non-coding RNAs play an important role in regulating photoperiod- and temperature-sensitive male sterility in rice. Sci Chin Life Sci 60:443–444CrossRefGoogle Scholar
  14. He S, Abad AR, Gelvin SB, Mackenzie SA (1996) A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA 93:11763–11768CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hu J, Wang K, Huang W, Liu G, Gao Y, Wang J, Huang Q, Ji Y, Qin X, Wan L, Zhu R, Li S, Yang D, Zhu Y (2012) The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 24:109–122CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hu J, Huang W, Huang Q, Qin X, Yu C, Wang L, Li S, Zhu R, Zhu Y (2014) Mitochondria and cytoplasmic male sterility in plants. Mitochondrion 19:282–288CrossRefPubMedGoogle Scholar
  17. Hu J, Zhu RS, Li SQ, Li YS, Yu JH, Huang WC, Zhu Y (2016) Discovery, utilization and perspective of Honglian cytoplasmic male sterility rice. Chin Sci Bull 61:3813–3821CrossRefGoogle Scholar
  18. Huang W, Yu C, Hu J, Wang L, Dan Z, Zhou W, He C, Zeng Y, Yao G, Qi J, Zhang Z, Zhu R, Chen X, Zhu Y (2015) Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proc Natl Acad Sci USA 112:14984–14989CrossRefPubMedPubMedCentralGoogle Scholar
  19. Itabashi E, Iwata N, Sota F, Kazama T, Toriyama K (2011) The fertility restorer gene, Rf2, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J 65:359–367CrossRefPubMedGoogle Scholar
  20. Iwabuchi M, Kyozuka J, Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial apt6 RNA restores fertility of cytoplasmic male sterile rice. EMBO J 12:1437–1446PubMedPubMedCentralGoogle Scholar
  21. Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, Ma C, Yi B, Wen J, Shen J (2012) A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J Exp Bot 63:1285–1295CrossRefPubMedGoogle Scholar
  22. Kazama T, Nakamura T, Watanabe M, Sugita M, Toriyama K (2008) Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J 55:619–628CrossRefPubMedGoogle Scholar
  23. Kim DH, Kang JG, Kim B (2007) Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Mol Biol 63:519–532CrossRefPubMedGoogle Scholar
  24. Klein RR, Klein PE, Mullet JE, Minx P, Rooney WL, Schertz KF (2005) Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111:994–1012CrossRefPubMedGoogle Scholar
  25. Koizuka N, Imai R, Fujimoto H, Hayakawa T, Kimura Y, Kohno-Murase J, Sakai T, Kawasaki S, Imamura J (2003) Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J 34:407–415CrossRefPubMedGoogle Scholar
  26. Komori T, Yamamoto T, Takemori N, Kashihara M, Matsushima H, Nitta N (2003) Fine genetic mapping of the nuclear gene, Rf-1, that restores the BT-type cytoplasmic male sterility in rice (Oryza sativa L.) by PCR-based markers. Euphytica 129:241–247CrossRefGoogle Scholar
  27. Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N (2004) Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J 37:315–325CrossRefPubMedGoogle Scholar
  28. Li S, Yang D, Zhu Y (2007) Characterization and use of male sterility in hybrid rice breeding. J Integr Plant Biol 49:791–804CrossRefGoogle Scholar
  29. Liu Z, Xu H, Guo J, Liu YG (2007) Structural and expressional variations of the mitochondrial genome conferring the Wild-Abortive type of cytoplasmic male sterility in rice. J Integr Plant Biol 49:908–914CrossRefGoogle Scholar
  30. Liu Z, Yang Z, Wang X, Li K, An H, Liu J, Yang G, Fu T, Yi B, Hong D (2016) A mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape. Mol Plant 9:1082–1084CrossRefPubMedGoogle Scholar
  31. Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu Y (2013) A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45:573–577CrossRefPubMedGoogle Scholar
  32. Ma GH, Yuan LP (2015) Hybrid rice achievements, development and prospect in China. J Integr Agric 14:197–205CrossRefGoogle Scholar
  33. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284CrossRefPubMedGoogle Scholar
  34. Okazaki M, Kazama T, Murata H, Motomura K, Toriyama K (2013) Whole mitochondrial genome sequencing and transcriptional analysis to uncover an RT102-type cytoplasmic male sterility-associated candidate gene derived from Oryza rufipogon. Plant Cell Physiol 54:1560–1568CrossRefPubMedGoogle Scholar
  35. Peng X, Wang K, Hu C, Zhu Y, Wang T (2010) The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice. BMC Plant Biol 10:125CrossRefPubMedPubMedCentralGoogle Scholar
  36. Qin X, Huang Q, Xiao H, Zhang Q, Ni C, Xu Y, Liu G, Yang D, Zhu Y, Hu J (2016) The rice DUF1620-containing and WD40-like repeat protein is required for the assembly of the restoration of fertility complex. New Phytol 210:934–945CrossRefPubMedGoogle Scholar
  37. Shi MS (1985) The discovery and study of the photosensitive recessive male-sterile rice (Oryza sativa L. ssp. japonica). Sci Agric Sin 2:44–48Google Scholar
  38. Shinjyo C (1969) Cytoplasmic genetic male sterility in cultivated rice, Oryza sativa L. II. The inheritance of male sterility. Jpn. J Genet 44(3):149–156Google Scholar
  39. Tang H, Luo D, Zhou D, Zhang Q, Tian D, Zheng X, Chen L, Liu YG (2014) The rice restorer Rf4 for Wild-Abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol Plant 7:1497–1500CrossRefPubMedGoogle Scholar
  40. Tang H, Zheng X, Li C, Xie X, Chen Y, Chen L, Zhao X, Zheng H, Zhou J, Ye S, Guo J, Liu YG (2017) Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Res 27:130–146CrossRefPubMedGoogle Scholar
  41. Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H (2008) Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 20:3331–3345CrossRefPubMedPubMedCentralGoogle Scholar
  42. Virmani SS, Ilyas-Ahmed M (2001) Environment-sensitive genic male sterility (EGMS) in crops. Adv Agron 72:139–195CrossRefGoogle Scholar
  43. Wan C, Li S, Wen L, Kong J, Wang K, Zhu Y (2007) Damage of oxidative stress on mitochondria during microspores development in Honglian CMS line of rice. Plant Cell Rep 26:373CrossRefPubMedGoogle Scholar
  44. Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D (2006) Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang K, Gao F, Ji Y, Liu Y, Dan Z, Yang P, Zhu Y, Li S (2013) ORFH79 impairs mitochondrial function via interaction with a subunit of electron transport chain complex III in Honglian cytoplasmic male sterile rice. New Phytol 198:408–418CrossRefPubMedGoogle Scholar
  46. Woloszynska M (2010) Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes-though this be madness, yet there’s method in’t. J Exp Bot 61:657CrossRefPubMedGoogle Scholar
  47. Yamamoto MP, Shinada H, Onodera Y, Komaki C, Mikami T (2008) A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants. Plant J 54:1027–1036CrossRefPubMedGoogle Scholar
  48. Yang JH, Liu XY, Yang XD, Zhang MF (2010) Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC Plant Biol 10:231CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhang G, Lu Y, Bharaj TS, Virmani SS, Huang N (1997) Mapping of the Rf-3 nuclear fertility-restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theo Appl Genes 94:27–33CrossRefGoogle Scholar
  50. Zhang Q, Liu YG, Zhang G, Mei M (2002) Molecular mapping of the fertility restorer gene Rf-4 for WA cytoplasmic male sterility in rice. Act Genet Sin 29:1001–1004 (in Chinese) Google Scholar
  51. Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, Chen L, Liu Y-G, Zhuang C (2012) Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22:649–660CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Dong J, Liu Q, Gu L, Zhou L, Feng M, Qin P, Hu X, Song C, Shi J, Song X, Ni E, Wu X, Deng Q, Liu Z, Chen M, Liu YG, Cao X, Zhuang C (2014) RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice. Nat Commun 5:4884CrossRefPubMedGoogle Scholar
  53. Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, Zhu L, Ni E, Jiang D, Zhao B, Zhuang C (2016) Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep 6:37395CrossRefPubMedPubMedCentralGoogle Scholar
  54. Zhu YG (2016) Fifty years of hybrid rice research in China. Chin Sci Bull 61:3740–3747 (in Chinese) CrossRefGoogle Scholar
  55. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Huiwu Tang
    • 1
    • 2
  • Yongyao Xie
    • 1
    • 2
  • Yao-Guang Liu
    • 1
    • 2
  • Letian Chen
    • 1
    • 2
  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesSouth China Agricultural UniversityGuangzhouChina
  2. 2.College of Life SciencesSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations