Skip to main content
Log in

Application of rice microspore-preferred promoters to manipulate early pollen development in Arabidopsis: a heterologous system

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Key message

Rice microspore-promoters.

Abstract

Based on microarray data analyzed for developing anthers and pollen grains, we identified nine rice microspore-preferred (RMP) genes, designated RMP1 through RMP9. To extend their biotechnological applicability, we then investigated the activity of RMP promoters originating from monocotyledonous rice in a heterologous system of dicotyledonous Arabidopsis. Expression of GUS was significantly induced in transgenic plants from the microspore to the mature pollen stages and was driven by the RMP1, RMP3, RMP4, RMP5, and RMP9 promoters. We found it interesting that, whereas RMP2 and RMP6 directed GUS expression in microspore at the early unicellular and bicellular stages, RMP7 and RMP8 seemed to be expressed at the late tricellular and mature pollen stages. Moreover, GUS was expressed in seven promoters, RMP3 through RMP9, during the seedling stage, in immature leaves, cotyledons, and roots. To confirm microspore-specific expression, we used complementation analysis with an Arabidopsis male-specific gametophytic mutant, sidecar pollen-2 (scp-2), to verify the activity of three promoters. That mutant shows defects in microspore development prior to pollen mitosis I. These results provide strong evidence that the SIDECAR POLLEN gene, driven by RMP promoters, successfully complements the scp-2 mutation, and they strongly suggest that these promoters can potentially be applied for manipulating the expression of target genes at the microspore stage in various species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn YO, Zheng M, Bevan DR, Esen A, Shiu SH, Benson J, Peng HP, Miller JT, Cheng LI, Poulton JE, Shih MC (2007) Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35. Phytochemistry 68:1510–1520

    Article  CAS  PubMed  Google Scholar 

  • Albani D, Altosaar I, Arnison PG, Fabijanski SF (1991) A gene showing sequence similarity to pectin esterase is specifically expressed in developing pollen of Brassica napus. Sequences in its 5′ flanking region are conserved in other pollen-specific promoters. Plant Mol Biol 16:501–513

    Article  CAS  PubMed  Google Scholar 

  • Aya K, Suzuki G, Suwabe K, Hobo T, Takahashi H, Shiono K, Yano K, Tsutsumi N, Nakazono M, Nagamura Y, Matsuoka M, Watanabe M (2011) Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays. PLoS ONE 6:e26162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae HK, Kang HG, Kim GJ, Eu HJ, Oh SA, Song JT, Chung IK, Eun MY, Park SK (2010) Transgenic rice plants carrying RNA interference constructs of AOS (allene oxide synthase) genes show severe male sterility. Plant Breed 129:647–651

    Article  CAS  Google Scholar 

  • Banci L, Bertini I, Coffi-Baffoni S, Jaiswal D, Peruzzini R, Winkelman J (2012) Structural characterization of CHCHD5 and CHCHD7: two atypical twin CX9C proteins. J Struct Biol 180:190–200

    Article  CAS  PubMed  Google Scholar 

  • Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478

    Article  CAS  PubMed  Google Scholar 

  • Burke JJ, Chen J (2015) Enhancement of reproductive heat tolerance in plant. PLoS ONE 10:e0122933

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang WC et al (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genom 9:561

    Article  Google Scholar 

  • Chen YC, McCormick S (1996) sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122:3243–3253

    CAS  PubMed  Google Scholar 

  • Cheong YH, Yoo CM, Park JM, Ryu GR, Goekjian VH, Nagao RT, Key JL, Cho MJ, Hong JC (1998) STF1 is a novel TGACG-binding factor with a zinc-finger motif and a bZIP domain which heterodimerizes with GBF proteins. Plant J 15:199–209

    Article  CAS  PubMed  Google Scholar 

  • Chow CN, Zheng HQ, Wu NY, Chien CH, Huang HD, Lee TY, Chiang-Hsieh YF, Hou PF, Yang TY, Chang WC (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 44(D1):D1154–D1160

    Article  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Custers JBM, Oldenhof MT, Schrauwen JAM, Cordewender JHG, Wullems GJ, van Lookeren Campagne MM (1997) Analysis of microspore-specific promoters in transgenic tobacco. Plant Mol Biol 35:689–699

    Article  CAS  PubMed  Google Scholar 

  • Darshi M, Trinh K, Murphy A, Taylor S (2012) Targeting and import mechanism of coiled-coil helix coiled-coil helix domain-containing protein 3 (ChChd3) into the mitochondrial intermembrane space. J Biol Chem 287:39480–39491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Horiuchi Y, Ueda Y, Mizuta Y, Kubo T, Yano K, Yamaki S, Tsuda K, Nagata T, Niihama M, Kato H, Kikuchi S, Hamada K, Mochizuki T, Ishimizu T, Iwai H, Tsutsumi N, Kurata N (2010) Rice expression atlas in reproductive development. Plant Cell Physiol 51:2060–2081

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Twell D, Schleiff E (2016) Pollen as a target of environmental changes. Plant Reprod 29:1–2

    Article  PubMed  Google Scholar 

  • Gupta V, Khurana R, Tyagi AK (2007) Promoters of two anther-specific genes confer organ-specific gene expression in a stage-specific manner in transgenic systems. Plant Cell Rep 26:1919–1931

    Article  CAS  PubMed  Google Scholar 

  • Han MJ, Jung KH, Yi G, Lee DY, An G (2006) Rice immature pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47:1457–1472

    Article  CAS  PubMed  Google Scholar 

  • Honys D, Oh SA, Renak D, Donders M, Solcova B, Johnson JA, Boudova R, Twell D (2006) Identification of microspore-active promoters that allow targeted manipulation of gene expression at early stages of microgametogenesis in Arabidopsis. BMC Plant Biol 6:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Hrubá P, Honys D, Twell D, Capková V, Tupý J (2005) Expression of beta-galactosidase and beta-xylosidase genes during microspore and pollen development. Planta 220:931–940

    Article  PubMed  Google Scholar 

  • Jeon JS, Chung YY, Lee S, Yi GH, Oh BG, An G (1999) Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol Biol 39:35–44

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice undeveloped tapetum 1 is a major regulator of early tapetum development. Plant Cell 17:2705–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khurana R, Kapoor S, Tyagi AK (2013a) Spatial and temporal activity of upstream regulatory regions of rice anther-specific genes in transgenic rice and Arabidopsis. Transgenic Res 22:31–46

    Article  CAS  PubMed  Google Scholar 

  • Khurana R, Kathuria H, Mukhopadhyay A, Kapoor S, Tyagi AK (2013b) 286 bp upstream regulatory region of a rice anther specific gene, OSIPP3, confers pollen-specific expression in Arabidopsis. Biotechnol Lett 35:455–462

    Article  CAS  PubMed  Google Scholar 

  • Kim DW, Lee SH, Choi SB, Won SK, Heo YK, Cho M, Park YI, Cho HT (2006) Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. Plant Cell 18:2958–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriete G, Niehaus K, Perlick AM, Pühler A, Broer I (1996) Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound N-acetyl-l-phosphinothricin. Plant J 9:809–818

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhan DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18:2999–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Shangguan Y, Zhu J, Lu Y, Han B (2013) The rice OsLTP6 gene promoter directs anther-specific expression by a combination of positive and negative regulatory elements. Planta 238:845–857

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Lee JY, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK (2006) RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol 62:397–408

    Article  CAS  PubMed  Google Scholar 

  • Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1556

    Article  PubMed  Google Scholar 

  • Nguyen TD, Oo MM, Moon S, Bae HK, Oh SA, Soh MS, Song JT, Kim JH, Jung KH, Park SK (2015) Expression analysis of two rice pollen-specific promoters using homologous and heterologous systems. Plant Biotechnol Rep 9:297–306

    Article  Google Scholar 

  • Nguyen TD, Moon S, Nguyen VNT, Gho Y, Soh MS, Song JT, An G, Oh SA, Park SK, Jung KH (2016) Genome-wide identification and analysis of rice genes preferentially expressed in pollen at an early developmental stage. Plant Mol Biol 92:71–88. doi:10.1007/s11103-016-0496-1

    Article  CAS  PubMed  Google Scholar 

  • Oh SA, Park KS, Twell D, Park SK (2010) The SIDECAR POLLEN gene encodes a microspore-specific LOB/AS2 domain protein required for the correct timing and orientation of asymmetric cell division. Plant J 64:839–850

    Article  CAS  PubMed  Google Scholar 

  • Oh SA, Jeon J, Park HJ, Grini PE, Twell D, Park SK (2016) Analysis of gemini pollen 3 mutant suggests a broad function of AUGMIN in microtubule organization during sexual reproduction in Arabidopsis. Plant J 87:188–201

    Article  CAS  PubMed  Google Scholar 

  • Oldenhof MT, Groot PF, Visser JH, Schrauwen JA, Wullems GJ (1996) Isolation and characterization of a microspore-specific gene from tobacco. Plant Mol Biol 31:213–225

    Article  CAS  PubMed  Google Scholar 

  • Oo MM, Bae HK, Nguyen TD, Moon M, Oh SA, Kim JH, Soh MS, Song JT, Jung KH, Park SK (2014) Evaluation of rice promoters conferring pollen-specific expression in a heterologous system, Arabidopsis. Plant Reprod 27:47–58

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    Article  CAS  PubMed  Google Scholar 

  • Park SK, Howden R, Twell D (1998) The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125:3789–3799

    CAS  PubMed  Google Scholar 

  • Park JI, Hakozaki H, Endo H, Takada Y, Ito H, Uchida M, Okabe T, Watanabe M (2006) Molecular characterization of mature pollen-specific genes encoding novel small cysteine-rich proteins in rice (Oryza sativa L.). Plant Cell Rep 25:466–474

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum JS, Kozarich JW (2003) Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr Opin Chem Biol 7:496–504

    Article  CAS  PubMed  Google Scholar 

  • Rutley N, Twell D (2015) A decade of pollen transcriptomics. Plant Reprod 28:73–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma KD (2014) Pollen development under cold stress: a molecular perspective. Austin J Genet Genom Res 1:4

    Google Scholar 

  • Singh SP, Pandey T, Srivastava R, Verma PC, Singh PK, Tuli R, Sawant SV (2010) BECLIN1 from Arabidopsis thaliana under the generic control of regulated expression systems, a strategy for developing male sterile plants. Plant Biotechnol 8:1005–1022

    Article  CAS  Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  • Suwabe K, Suzuki G, Takahashi H, Shiono K, Endo M, Yano K, Fujita M, Masuko H, Saito H, Fujioka T, Kaneko F, Kazama T, Mizuta Y, Kawagishi-Kobayashi M, Tsutsumi N, Kurata N, Nakazono M, Watanabe M (2008) Separated transcriptomes of male gametophyte and tapetum in rice: validity of a laser microdissection (LM) microarray. Plant Cell Physiol 49:1407–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swapna L, Khurana R, Vijaya-Kumar S, Tyagi AK, Rao KV (2011) Pollen-specific expression of Oryza sativa indica pollen allergen gene (OSIPA) promoter in rice and Arabidopsis transgenic systems. Mol Biotechnol 48:49–59

    Article  CAS  PubMed  Google Scholar 

  • Tan CM, Chen RJ, Zhang JH, Gao XL, Li LH, Wang PR, Deng XJ, Xu ZJ (2013) OsPOP5, a prolyl oligopeptidase family gene from rice confers abiotic stress tolerance in Escherichia coli. Int J Mol Sci 14:20204–20219

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanthanuch W, Chantarangsee M, Maneesan J, Ketudat-Cairns J (2008) Genomic and expression analysis of glycosyl hydrolase family 35 genes from rice (Oryza sativa L.). BMC Plant Biol 8:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ (2002) MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat Cell Biol 4:711–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM (1997) A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9:491–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genom 11:338

    Article  Google Scholar 

  • Yang T, Poovaiah BW (2002) A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. Biol Chem 277:45049–45058

    Article  CAS  Google Scholar 

  • Yokoi S, Tsuchiya T, Toriyama K, Hinata K (1997) Tapetum-specific expression of the Osg6B promoter-β-glucuronidase gene in transgenic rice. Plant Cell Rep 16:363–367

    CAS  Google Scholar 

  • Yoshida KT, Kuboyama T (2001) A subtilisin-like serine protease specifically expressed in reproductive organs in rice. Sex Plant Reprod 13:193–199

    Article  CAS  Google Scholar 

  • Zhang H, Liang W, Yang X, Luo X, Jiang N, Ma H, Zhang D (2010) Carbon starved anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. Plant Cell 22:672–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of the “Cooperative Research Program for Agriculture Science and Technology Development (Project Nos. PJ01182602 to KHJ; PJ01194201 to SKP),” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ki Hong Jung or Soon Ki Park.

Additional information

Communicated by David Twell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Complementation analysis of scp-2 mutant using SCP gene expression under the control of RMP promoters in a heterologous system. a Schematic diagram of vectors used for complementation analysis. b Silique production in complementing lines (proRMP-SCP) compared with scp-2 hm mutant background (scp-2) and wild-type plants (EPS 8787 kb)

Fig. S2

Confirmation of T-DNA insertion in ProRMP-SCP:dHA lines. a 1316-bp SCP-dHA fragment was amplified from DNA of 14 transgenic lines (Lanes 1–14), using gene-specific primers SCP forward and reverse. b scp-2 allele was detected using LBb1 and LOBRP primer set. c SCP wild-type gene was checked in scp-2 hm background and transgenic lines using LBb1 and 47870-R primers. scp-2 hm and Col ecotype were used as controls (EPS 5240 kb)

Fig. S3

Percentages of aberrant pollen grains from non-transformed scp-2 homozygotes (scp-2) and transformed scp-2 hm harboring proRMP-SCP:dHA were calculated at mature pollen stage in T1 generation (EPS 3269 kb)

Supplementary material 4 (XLSX 11 kb)

Supplementary material 5 (DOCX 37 kb)

Supplementary material 6 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.D., Moon, S., Oo, M.M. et al. Application of rice microspore-preferred promoters to manipulate early pollen development in Arabidopsis: a heterologous system. Plant Reprod 29, 291–300 (2016). https://doi.org/10.1007/s00497-016-0293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-016-0293-7

Keywords

Navigation