Plant Reproduction

, Volume 29, Issue 3, pp 265–272 | Cite as

Expression analysis of KDEL-CysEPs programmed cell death markers during reproduction in Arabidopsis

  • Liang-Zi Zhou
  • Timo Höwing
  • Benedikt Müller
  • Ulrich Z. Hammes
  • Christine Gietl
  • Thomas Dresselhaus
Short Communication

Key message

CEPcell death markers.


Programmed cell death (PCD) is essential for proper plant growth and development. Plant-specific papain-type KDEL-tailed cysteine endopeptidases (KDEL-CysEPs or CEPs) have been shown to be involved in PCD during vegetative development as executors for the last step in the process. The Arabidopsis genome encodes three KDEL-CysEPs: AtCEP1, AtCEP2 and AtCEP3. With the help of fluorescent fusion reporter lines, we report here a detailed expression analysis of KDEL-CysEP (pro)proteins during reproductive processes, including flower organ and germline development, fertilization and seed development. AtCEP1 is highly expressed in different reproductive tissues including nucellus cells of mature ovule and the connecting edge of anther and filament. After fertilization, AtCEP1 marks integument cell layers of the seeds coat as well as suspensor and columella cells of the developing embryo. Promoter activity of AtCEP2 is detected in the style of immature and mature pistils, in other floral organs including anther, sepal and petal. AtCEP2 mainly localizes to parenchyma cells next to xylem vessels. Although there is no experimental evidence to demonstrate that KDEL-CysEPs are involved in PCD during fertilization, the expression pattern of AtCEPs, which were previously shown to represent cell death markers during vegetative development, opens up new avenues to investigate PCD in plant reproduction.


Programmed cell death Suspensor Seed development Vasculature KDEL-tailed cysteine endopeptidases Arabidopsis 


  1. Bilsborough GD et al (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci U S A 108:3424–3429. doi:10.1073/pnas.1015162108 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blanvillain R et al (2011) The Arabidopsis peptide kiss of death is an inducer of programmed cell death. EMBO J 30:1173–1183. doi:10.1038/emboj.2011.14 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cannon MC et al (2008) Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA 105:2226–2231. doi:10.1073/pnas.0711980105 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cardarelli M, Cecchetti V (2014) Auxin polar transport in stamen formation and development: How many actors? Front Plant Sci 5:333. doi:10.3389/fpls.2014.00333 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Choi CQ (2013) The fate of the plant embryo’s suspensor: balancing life and death. PLoS Biol 11:e1001656. doi:10.1371/journal.pbio.1001656 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Escamez S, Tuominen H (2014) Programmes of cell death and autolysis in tracheary elements: when a suicidal cell arranges its own corpse removal. J Exp Bot 65:1313–1321. doi:10.1093/jxb/eru057 CrossRefPubMedGoogle Scholar
  7. Fendrych M et al (2014) Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr Biol 24:931–940. doi:10.1016/j.cub.2014.03.025 CrossRefPubMedGoogle Scholar
  8. Filiz V, Meral U (2011) Development and programmed cell death in the filament cells of Lathyrus undulatus Boiss. Caryologia 64:164–172. doi:10.1080/00087114.2002.589779 CrossRefGoogle Scholar
  9. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758. doi:10.1016/j.cell.2011.10.033 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Furuta KM, Yadav SR, Lehesranta S, Belevich I, Miyashima S, Heo JO, Vatén A, Lindgren O, De Rybel B, Van Isterdael G, Somervuo P, Lichtenberger R, Rocha R, Thitamadee S, Tähtiharju S, Auvinen P, Beeckman T, Jokitalo E, Helariutta Y (2014) Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345:933–937. doi:10.1126/science.1253736 CrossRefPubMedGoogle Scholar
  11. Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6:201–211. doi:10.1111/j.1462-5822.2004.00361.x CrossRefPubMedGoogle Scholar
  12. Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci USA 102:2238–2243. doi:10.1073/pnas.0409429102 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Haughn G, Chaudhury A (2005) Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci 10:472–477. doi:10.1016/j.tplants.2005.08.005 CrossRefPubMedGoogle Scholar
  14. Helm M et al (2008) KDEL-tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extensin scaffolds. Am J Bot 95:1049–1062. doi:10.3732/ajb.2007404 CrossRefPubMedGoogle Scholar
  15. Hierl G, Howing T, Isono E, Lottspeich F, Gietl C (2014) Ex vivo processing for maturation of Arabidopsis KDEL-tailed cysteine endopeptidase 2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles. Plant Mol Biol 84:605–620. doi:10.1007/s11103-013-0157-6 CrossRefPubMedGoogle Scholar
  16. Höwing T, Huesmann C, Hoefle C, Nagel MK, Isono E, Hückelhoven R, Gietl C (2014) Endoplasmic reticulum KDEL-tailed cysteine endopeptidase 1 of Arabidopsis (AtCEP1) is involved in pathogen defense. Front Plant Sci 5:58. doi:10.3389/fpls.2014.00058 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kondo Y, Tamaki T, Fukuda H (2014) Regulation of xylem cell fate. Front Plant Sci 5:315. doi:10.3389/fpls.2014.00315 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kumpf RP, Nowack MK (2015) The root cap: a short story of life and death. J Exp Bot 66:5651–5662. doi:10.1093/jxb/erv295 CrossRefPubMedGoogle Scholar
  19. Kuusk S, Sohlberg JJ, Magnus Eklund D, Sundberg E (2006) Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. Plant J 47:99–111. doi:10.1111/j.1365-313X.2006.02774.x CrossRefPubMedGoogle Scholar
  20. Lawit SJ, Chamberlin MA, Agee A, Caswell ES, Albertsen MC (2013) Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. Plant Reprod 26:125–137. doi:10.1007/s00497-013-0215-x CrossRefPubMedGoogle Scholar
  21. Lombardi L, Casani S, Ceccarelli N, Galleschi L, Picciarelli P, Lorenzi R (2007) Programmed cell death of the nucellus during Sechium edule Sw. seed development is associated with activation of caspase-like proteases. J Exp Bot 58:2949–2958. doi:10.1093/jxb/erm137 CrossRefPubMedGoogle Scholar
  22. Montiel G, Gantet P, Jay-Allemand C, Breton C (2004) Transcription factor networks. Pathways to the knowledge of root development. Plant Physiol 136:3478–3485. doi:10.1104/pp.104.051029 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, Nishimura M, Hara-Nishimura I (2005) A vacuolar processing enzyme, deltaVPE, is involved in seed coat formation at the early stage of seed development. Plant Cell 17:876–887. doi:10.1105/tpc.104.026872 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Olvera-Carrillo Y et al (2015) A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiol 169:2684–2699. doi:10.1104/pp.15.00769 PubMedPubMedCentralGoogle Scholar
  25. Orman-Ligeza B, Parizot B, Gantet PP, Beeckman T, Bennett MJ, Draye X (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18:459–467. doi:10.1016/j.tplants.2013.04.010 CrossRefPubMedGoogle Scholar
  26. Orozco-Arroyo G, Paolo D, Ezquer I, Colombo L (2015) Networks controlling seed size in Arabidopsis. Plant Reprod 28:17–32. doi:10.1007/s00497-015-0255-5 CrossRefPubMedGoogle Scholar
  27. Radchuk V, Weier D, Radchuk R, Weschke W, Weber H (2011) Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth. J Exp Bot 62:1217–1227. doi:10.1093/jxb/erq348 CrossRefPubMedGoogle Scholar
  28. Reiser L, Fischer RL (1993) The ovule and the embryo sac. Plant Cell 5:1291–1301. doi:10.1105/tpc.5.10.1291 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Reyes-Olalde JI, Zuniga-Mayo VM, Chavez Montes RA, Marsch-Martinez N, de Folter S (2013) Inside the gynoecium: at the carpel margin. Trends Plant Sci 18:644–655. doi:10.1016/j.tplants.2013.08.002 CrossRefPubMedGoogle Scholar
  30. Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197. doi:10.1007/s00425-004-1407-2 CrossRefPubMedGoogle Scholar
  31. Smyth D, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767. doi:10.1105/tpc.2.8.755 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Song X, Yuan L, Sundaresan V (2014) Antipodal cells persist through fertilization in the female gametophyte of Arabidopsis. Plant Reprod 27:197–203. doi:10.1007/s00497-014-0251-1 CrossRefPubMedGoogle Scholar
  33. Sundaresan V, Alandete-Saez M (2010) Pattern formation in miniature: the female gametophyte of flowering plants. Development 137:179–189. doi:10.1242/dev.030346 CrossRefPubMedGoogle Scholar
  34. ten Hove CA, Lu KJ, Weijers D (2015) Building a plant: cell fate specification in the early Arabidopsis embryo. Development 142:420–430. doi:10.1242/dev.111500 CrossRefPubMedGoogle Scholar
  35. Than ME, Helm M, Simpson DJ, Lottspeich F, Huber R, Gietl C (2004) The 2.0 A crystal structure and substrate specificity of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm. J Mol Biol 336:1103–1116. doi:10.1016/j.jmb.2003.12.075 CrossRefPubMedGoogle Scholar
  36. Trigueros M et al (2009) The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell 21:1394–1409. doi:10.1105/tpc.109.065508 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Van Durme M, Nowack MK (2016) Mechanisms of developmentally controlled cell death in plants. Curr Opin Plant Biol 29:29–37. doi:10.1016/j.pbi.2015.10.013 CrossRefPubMedGoogle Scholar
  38. Van Hautegem T, Waters AJ, Goodrich J, Nowack MK (2015) Only in dying, life: programmed cell death during plant development. Trends Plant Sci 20:102–113. doi:10.1016/j.tplants.2014.10.003 CrossRefPubMedGoogle Scholar
  39. Vizcay-Barrena G, Wilson ZA (2006) Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot 57:2709–2717. doi:10.1093/jxb/erl032 CrossRefPubMedGoogle Scholar
  40. Wu H, Cheung AY (2000) Programmed cell death in plant reproduction. Plant Mol Biol 44:267–281. doi:10.1023/A:1026536324081 CrossRefPubMedGoogle Scholar
  41. Yamauchi T, Shimamura S, Nakazono M, Mochizuki T (2013) Aerenchyma formation in crop species: a review. Field Crops Research 152:8–16. doi:10.1016/j.fcr.2012.12.008 CrossRefGoogle Scholar
  42. Yeung EC, Meinke DW (1993) Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5:1371–1381. doi:10.1105/tpc.5.10.1371 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yin LL, Xue HW (2012) The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell 24:1049–1065. doi:10.1105/tpc.111.094854 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhang D et al (2014) The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell 26:2939–2961. doi:10.1105/tpc.114.127282 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhao D, Ma H (2000) Male fertility: a case of enzyme identity. Curr Biol 10:R904–R907. doi:10.1016/S0960-9822(00)00848-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Liang-Zi Zhou
    • 1
  • Timo Höwing
    • 2
  • Benedikt Müller
    • 1
  • Ulrich Z. Hammes
    • 1
  • Christine Gietl
    • 2
  • Thomas Dresselhaus
    • 1
  1. 1.Cell Biology and Plant Biochemistry, Biochemie-Zentrum RegensburgUniversity of RegensburgRegensburgGermany
  2. 2.Center of Life and Food Sciences Weihenstephan, Lehrstuhl für BotanikTechnische Universität MünchenFreisingGermany

Personalised recommendations