Advertisement

Plant Reproduction

, Volume 29, Issue 1–2, pp 81–91 | Cite as

Unfolded protein response in pollen development and heat stress tolerance

  • Sotirios FragkostefanakisEmail author
  • Anida Mesihovic
  • Yangjie Hu
  • Enrico SchleiffEmail author
Review
Part of the following topical collections:
  1. Pollen development and stress response

Key message

Importance of the UPR for pollen.

Abstract

Pollen is particularly sensitive to environmental conditions that disturb protein homeostasis, such as higher temperatures. Their survival is dependent on subcellular stress response systems, one of which maintains protein homeostasis in the endoplasmic reticulum (ER). Disturbance of ER proteostasis due to stress leads to the activation of the unfolded protein response (UPR) that mitigates stress damage mainly by increasing ER-folding capacity and reducing folding demands. The UPR is controlled by ER membrane-associated transcription factors and an RNA splicing factor. They are important components of abiotic stress responses including general heat stress response and thermotolerance. In addition to responding to environmental stresses, the UPR is implicated in developmental processes required for successful male gametophyte development and fertilization. Consequently, defects in the UPR can lead to pollen abortion and male sterility. Several UPR components are involved in the elaboration of the ER network, which is required for pollen germination and polar tube growth. Transcriptome and proteome analyses have shown that components of the ER-folding machinery and the UPR are upregulated at specific stages of pollen development supporting elevated demands for secretion. Furthermore, genetic studies have revealed that knockout mutants of UPR genes are defective in producing viable or competitive pollen. In this review, we discuss recent findings regarding the importance of the UPR for both pollen development and stress response.

Keywords

Unfolded protein response Endoplasmic reticulum Male gametophyte Pollen tube Heat ER stress 

Notes

Acknowledgments

The authors would like to thank Klaus-Dieter Scharf for helpful comments and SPOT-ITN consortium for the support. The work is supported by SPOT-ITN/Marie-Curie to ES and the China Scholarship Council to YH.

Supplementary material

497_2016_276_MOESM1_ESM.xls (3.1 mb)
Supplementary Table 1 Expression of Arabidopsis thaliana genes induced by tunicamycin treatment, during pollen development. The 193 genes were selected from three studies (Iwata et al. 2010; Martínez and Chrispeels 2003; Sugio et al. 2009). The expression data derive from the studies of Honys and Twell (2004) for development and Qin et al. (2009) for germination, and values were obtained from The Pollen Transcriptome Navigator (http://pollen.umd.edu/). For relative expression, the expression values were normalized against UN or DP samples (XLS 3222 kb)

References

  1. Aebi M, Bernasconi R, Clerc S, Molinari M (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82. doi: 10.1016/j.tibs.2009.10.001 PubMedCrossRefGoogle Scholar
  2. Aparicio F, Thomas CL, Lederer C et al (2005) Virus induction of heat shock protein 70 reflects a general response to protein accumulation in the plant cytosol. Plant Physiol 138:529–536. doi: 10.1104/pp.104.058958 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460. doi: 10.1146/annurev-arplant-042809-112312 PubMedCrossRefGoogle Scholar
  4. Behnke J, Feige MJ, Hendershot LM (2015) BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions. J Mol Biol 427:1589–1608. doi: 10.1016/j.jmb.2015.02.011 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bernales S, McDonald KL, Walter P (2006) Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:e423. doi: 10.1371/journal.pbio.0040423 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brar GA, Yassour M, Friedman N et al (2012) High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335:552–557. doi: 10.1126/science.1215110 PubMedCrossRefGoogle Scholar
  7. Buzeli RAA, Cascardo JCM, Rodrigues LAZ et al (2002) Tissue-specific regulation of BiP genes: a cis-acting regulatory domain is required for BiP promoter activity in plant meristems. Plant Mol Biol 50:757–771. doi: 10.1023/A:1019994721545 PubMedCrossRefGoogle Scholar
  8. Caramelo JJ, Castro OA, Alonso LG et al (2003) UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc Natl Acad Sci USA 100:86–91. doi: 10.1073/pnas.262661199 PubMedCrossRefGoogle Scholar
  9. Chaturvedi P, Ischebeck T, Egelhofer V et al (2013) Cell-specific analysis of the tomato pollen proteome from pollen mother cell to mature pollen provides evidence for developmental priming. J Proteome Res 12:4892–4903. doi: 10.1021/pr400197p PubMedCrossRefGoogle Scholar
  10. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572. doi: 10.1146/annurev.arplant.59.032607.092921 PubMedCrossRefGoogle Scholar
  11. Conger R, Chen Y, Fornaciari S et al (2011) Evidence for the involvement of the Arabidopsis SEC24A in male transmission. J Exp Bot 62:4917–4926. doi: 10.1093/jxb/err174 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Crosti P, Malerba M, Bianchetti R (2001) Tunicamycin and Brefeldin A induce in plant cells a programmed cell death showing apoptotic features. Protoplasma 216:31–38PubMedCrossRefGoogle Scholar
  13. Dai S, Li L, Chen T et al (2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6:2504–2529. doi: 10.1002/pmic.200401351 PubMedCrossRefGoogle Scholar
  14. Dai S, Wang T, Yan X, Chen S (2007) Proteomics of pollen development and germination. J Proteome Res 6:4556–4563. doi: 10.1021/pr070474y PubMedCrossRefGoogle Scholar
  15. Deng Y, Humbert S, Liu J-X et al (2011) Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proc Natl Acad Sci USA 108:7247–7252. doi: 10.1073/pnas.1102117108 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Deng Y, Srivastava R, Howell SH (2013a) Protein kinase and ribonuclease domains of IRE1 confer stress tolerance, vegetative growth, and reproductive development in Arabidopsis. Proc Natl Acad Sci USA 110:19633–19638. doi: 10.1073/pnas.1314749110 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Deng Y, Srivastava R, Howell SH (2013b) Endoplasmic reticulum (ER) stress response and its physiological roles in plants. Int J Mol Sci 14:8188–8212. doi: 10.3390/ijms14048188 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fragkostefanakis S, Röth S, Schleiff E, Scharf K-D (2014a) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ. doi: 10.1111/pce.12396 Google Scholar
  19. Fragkostefanakis S, Simm S, Paul P et al (2014b) Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray. Plant Cell Environ 38:693–709. doi: 10.1111/pce.12426 PubMedCrossRefGoogle Scholar
  20. Frand AR, Kaiser CA (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1:161–170. doi: 10.1016/S1097-2765(00)80017-9 PubMedCrossRefGoogle Scholar
  21. Frank G, Pressman E, Ophir R et al (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60:3891–3908. doi: 10.1093/jxb/erp234 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Franklin-Tong VE, Lawrence MJ, Franklin FCH (1990) Self-incompatibility in Papaver rhoeas L.: inhibition of incompatible pollen tube growth is dependent on pollen gene expression. New Phytol 116:319–324. doi: 10.1111/j.1469-8137.1990.tb04720.x CrossRefGoogle Scholar
  23. Fujita M, Mizukado S, Fujita Y et al (2007) Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochem Biophys Res Commun 364:250–257. doi: 10.1016/j.bbrc.2007.09.124 PubMedCrossRefGoogle Scholar
  24. Gao H, Brandizzi F, Benning C, Larkin RM (2008) A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:16398–16403. doi: 10.1073/pnas.0808463105 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Giorno F, Wolters-Arts M, Grillo S et al (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J Exp Bot 61:453–462. doi: 10.1093/jxb/erp316 PubMedCrossRefGoogle Scholar
  26. Han D, Lerner AG, Vande Walle L et al (2009) IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138:562–575. doi: 10.1016/j.cell.2009.07.017 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. doi: 10.1038/nature10317 PubMedCrossRefGoogle Scholar
  28. Hayashi S, Wakasa Y, Takahashi H et al (2012) Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J 69:946–956. doi: 10.1111/j.1365-313X.2011.04844.x PubMedCrossRefGoogle Scholar
  29. Hayashi S, Takahashi H, Wakasa Y et al (2013) Identification of a cis-element that mediates multiple pathways of the endoplasmic reticulum stress response in rice. Plant J 74:248–257. doi: 10.1111/tpj.12117 PubMedCrossRefGoogle Scholar
  30. Haynes CM, Ron D (2010) The mitochondrial UPR—protecting organelle protein homeostasis. J Cell Sci 123:3849–3855. doi: 10.1242/jcs.075119 PubMedCrossRefGoogle Scholar
  31. Holmes-Davis R, Tanaka CK, Vensel WH et al (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884. doi: 10.1002/pmic.200402011 PubMedCrossRefGoogle Scholar
  32. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85. doi: 10.1186/gb-2004-5-11-r85 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Honys D, Reňák D, Twell D (2006) Male gametophyte development and function. Plant Biotechnol 1:209–224. doi: 10.1007/978-3-642-02301-9_11 Google Scholar
  34. Howell SH (2013) Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol 64:477–499. doi: 10.1146/annurev-arplant-050312-120053 PubMedCrossRefGoogle Scholar
  35. Hüttner S, Veit C, Schoberer J et al (2012) Unraveling the function of Arabidopsis thaliana OS9 in the endoplasmic reticulum-associated degradation of glycoproteins. Plant Mol Biol 79:21–33. doi: 10.1007/s11103-012-9891-4 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ishiguro S, Watanabe Y, Ito N et al (2002) SHEPHERD is the Arabidopsis GRP94 responsible for the formation of functional CLAVATA proteins. EMBO J 21:898–908. doi: 10.1093/emboj/21.5.898 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Iwata Y, Fedoroff NV, Koizumi N (2008) Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 20:3107–3121. doi: 10.1105/tpc.108.061002 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Iwata Y, Sakiyama M, Lee MH, Koizumi N (2010) Transcriptomic response of Arabidopsis thaliana to tunicamycin-induced endoplasmic reticulum stress. Plant Biotechnol 27:161–171CrossRefGoogle Scholar
  39. Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802. doi: 10.1038/nrm3702 PubMedCrossRefGoogle Scholar
  40. Johnson AE, van Waes MA (1999) The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 15:799–842. doi: 10.1146/annurev.cellbio.15.1.799 PubMedCrossRefGoogle Scholar
  41. Koiwa H, Li F, McCully MG et al (2003) The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 15:2273–2284. doi: 10.1105/tpc.013862 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Koizumi N, Ujino T, Sano H, Chrispeels MJ (1999) Overexpression of a gene that encodes the first enzyme in the biosynthesis of asparagine-linked glycans makes plants resistant to tunicamycin and obviates the tunicamycin-induced unfolded protein response. Plant Physiol 121:353–361. doi: 10.1104/pp.121.2.353 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Koizumi N, Martínez IM, Kimata Y et al (2001) Molecular characterization of two Arabidopsis Ire1 homologs, endoplasmic reticulum-located transmembrane protein kinases. Plant Physiol 127:949–962. doi: 10.1104/pp.010636 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kotak S, Larkindale J, Lee U et al (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316. doi: 10.1016/j.pbi.2007.04.011 PubMedCrossRefGoogle Scholar
  45. Lerouge P, Cabanes-Macheteau M, Rayon C et al (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol Biol 38:31–48. doi: 10.1023/A:1006012005654 PubMedCrossRefGoogle Scholar
  46. Li H-J, Xue Y, Jia D-J et al (2011) POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23:3288–3302. doi: 10.1105/tpc.111.088914 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Li Y, Humbert S, Howell SH (2012) ZmbZIP60 mRNA is spliced in maize in response to ER stress. BMC Res Notes 5:144. doi: 10.1186/1756-0500-5-144 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lisbona F, Rojas-Rivera D, Thielen P et al (2009) BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1α. Mol Cell 33:679–691. doi: 10.1016/j.molcel.2009.02.017 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Liu HC, Charng YY (2012) Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response. Plant Signal Behav 7:547–550. doi: 10.4161/psb.19803 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Liu J-X, Howell SH (2010a) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22:2930–2942. doi: 10.1105/tpc.110.078154 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Liu J-X, Howell SH (2010b) bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. Plant Cell 22:782–796. doi: 10.1105/tpc.109.072173 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Liu J-X, Srivastava R, Che P, Howell SH (2007a) An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane-associated transcription factor, bZIP28. Plant Cell 19:4111–4119. doi: 10.1105/tpc.106.050021 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Liu J-X, Srivastava R, Che P, Howell SH (2007b) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J 51:897–909. doi: 10.1111/j.1365-313X.2007.03195.x PubMedPubMedCentralCrossRefGoogle Scholar
  54. Liu Y, Xiong Y, Bassham DC (2009) Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5:954–963. doi: 10.4161/auto.5.7.9290 PubMedCrossRefGoogle Scholar
  55. Liu L, Cui F, Li Q et al (2011) The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res 21:957–969. doi: 10.1038/cr.2010.181 PubMedCrossRefGoogle Scholar
  56. Liu Y, Burgos JS, Deng Y et al (2012) Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24:4635–4651. doi: 10.1105/tpc.112.101535 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lu SJ, Yang ZT, Sun L et al (2012) Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol Plant 5:504–514. doi: 10.1093/mp/ssr115 PubMedCrossRefGoogle Scholar
  58. Maattanen P, Kozlov G, Gehring K, Thomas DY (2006) ERp57 and PDI: multifunctional protein disulfide isomerases with similar domain architectures but differing substrate–partner associations. Biochem Cell Biol 84:881–889. doi: 10.1139/o06-186 PubMedCrossRefGoogle Scholar
  59. Martínez IM, Chrispeels MJ (2003) Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15:561–576. doi: 10.1105/tpc.007609 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Maruyama D, Endo T, Nishikawa S (2010) BiP-mediated polar nuclei fusion is essential for the regulation of endosperm nuclei proliferation in Arabidopsis thaliana. Proc Natl Acad Sci USA 107:1684–1689. doi: 10.1073/pnas.0905795107 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Maruyama D, Sugiyama T, Endo T, Nishikawa S-I (2014) Multiple BiP genes of Arabidopsis thaliana are required for male gametogenesis and pollen competitiveness. Plant Cell Physiol 55:801–810. doi: 10.1093/pcp/pcu018 PubMedCrossRefGoogle Scholar
  62. Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314. doi: 10.1105/tpc.5.10.1303 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Meunier L, Usherwood Y, Chung KT, Hendershot LM (2002) A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 13:4456–4469. doi: 10.1091/mbc.E02-05-0311 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mishiba K, Nagashima Y, Suzuki E et al (2013) Defects in IRE1 enhance cell death and fail to degrade mRNAs encoding secretory pathway proteins in the Arabidopsis unfolded protein response. Proc Natl Acad Sci USA 110:5713–5718. doi: 10.1073/pnas.1219047110 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nagashima Y, Mishiba K-I, Suzuki E et al (2011) Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor. Sci Rep 1:29. doi: 10.1038/srep00029 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Niu N, Liang W, Yang X et al (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445. doi: 10.1038/ncomms2396 PubMedCrossRefGoogle Scholar
  67. Noh S-J, Kwon CS, Oh D-H et al (2003) Expression of an evolutionarily distinct novel BiP gene during the unfolded protein response in Arabidopsis thaliana. Gene 311:81–91. doi: 10.1016/S0378-1119(03)00559-6 PubMedCrossRefGoogle Scholar
  68. Oh DH, Kwon CS, Sano H et al (2003) Conservation between animals and plants of the cis-acting element involved in the unfolded protein response. Biochem Biophys Res Commun 301:225–230. doi: 10.1016/S0006-291X(02)03019-X PubMedCrossRefGoogle Scholar
  69. Onda Y, Kumamaru T, Kawagoe Y (2009) ER membrane-localized oxidoreductase Ero1 is required for disulfide bond formation in the rice endosperm. Proc Natl Acad Sci USA 106:14156–14161. doi: 10.1073/pnas.0904429106 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Pacini E, Franchi GG, Hesse M (1985) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst Evol 149:155–185. doi: 10.1007/BF00983304 CrossRefGoogle Scholar
  71. Qin Y, Leydon AR, Manziello A, Pandey R et al (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621. doi: 10.1371/journal.pgen.1000621 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ramundo S, Rochaix J-D (2014) Chloroplast unfolded protein response, a new plastid stress signaling pathway? Plant Signal Behav 9:e972874. doi: 10.4161/15592316.2014.972874 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Reimold AM, Iwakoshi NN, Manis J et al (2001) Plasma cell differentiation requires the transcription factor XBP-1. Nature 412:300–307. doi: 10.1038/35085509 PubMedCrossRefGoogle Scholar
  74. Reyes F, León G, Donoso M et al (2010) The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. Plant J 61:423–435. doi: 10.1111/j.1365-313X.2009.04066.x PubMedCrossRefGoogle Scholar
  75. Rhoads DM, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–194. doi: 10.1016/j.mito.2007.01.002 PubMedCrossRefGoogle Scholar
  76. Rodriguez-López J, Martínez-Centeno C, Padmanaban A et al (2014) Nodulin 22, a novel small heat-shock protein of the endoplasmic reticulum, is linked to the unfolded protein response in common bean. Mol Plant Microbe Interact 27:18–29. doi: 10.1094/MPMI-07-13-0200-R PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. doi: 10.1038/nrm2199 PubMedCrossRefGoogle Scholar
  78. Rothblatt JA, Deshaies RJ, Sanders SL et al (1989) Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast. J Cell Biol 109:2641–2652PubMedCrossRefGoogle Scholar
  79. Sato S, Peet MM, Thomas JF (2002) Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J Exp Bot 53:1187–1195. doi: 10.1093/jexbot/53.371.1187 PubMedCrossRefGoogle Scholar
  80. Scharf KD, Siddique M, Vierling E (2001) The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress 6:225–237CrossRefGoogle Scholar
  81. Sheoran IS, Sproule KA, Olson DJH et al (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex Plant Reprod 19:185–196. doi: 10.1007/s00497-006-0035-3 CrossRefGoogle Scholar
  82. Sheoran IS, Pedersen EJ, Ross ARS, Sawhney VK (2009) Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta 230:779–793. doi: 10.1007/s00425-009-0983-6 PubMedCrossRefGoogle Scholar
  83. Sidrauski C, Walter P (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90:1031–1039. doi: 10.1016/S0092-8674(00)80369-4 PubMedCrossRefGoogle Scholar
  84. Srivastava R, Deng Y, Shah S et al (2013) BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell 25:1416–1429. doi: 10.1105/tpc.113.110684 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Su Z, Ma X, Guo H et al (2013) Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. Plant Cell 25:3785–3807. doi: 10.1105/tpc.113.115428 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sugio A, Dreos R, Aparicio F, Maule AJ (2009) The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21:642–654. doi: 10.1105/tpc.108.062596 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sun L, Yang ZT, Song ZT et al (2013) The plant-specific transcription factor gene NAC103 is induced by bZIP60 through a new cis-regulatory element to modulate the unfolded protein response in Arabidopsis. Plant J 76:274–286. doi: 10.1111/tpj.12287 PubMedGoogle Scholar
  88. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528. doi: 10.1038/nrm2918 PubMedCrossRefGoogle Scholar
  89. Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160. doi: 10.1007/s00497-010-0157-5 PubMedCrossRefGoogle Scholar
  90. Tyson JR, Stirling CJ (2000) LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J 19:6440–6452. doi: 10.1093/emboj/19.23.6440 PubMedPubMedCentralCrossRefGoogle Scholar
  91. von Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457. doi: 10.1016/j.tplants.2007.08.014 CrossRefGoogle Scholar
  92. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086. doi: 10.1126/science.1209038 PubMedCrossRefGoogle Scholar
  93. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. doi: 10.1016/j.tplants.2004.03.006 PubMedCrossRefGoogle Scholar
  94. Watanabe N, Lam E (2006) Arabidopsis Bax inhibitor-1 functions as an attenuator of biotic and abiotic types of cell death. Plant J 45:884–894. doi: 10.1111/j.1365-313X.2006.02654.x PubMedCrossRefGoogle Scholar
  95. Watanabe N, Lam E (2008) BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 283:3200–3210. doi: 10.1074/jbc.M706659200 PubMedCrossRefGoogle Scholar
  96. Williams DB (2006) Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J Cell Sci 119:615–623. doi: 10.1242/jcs.02856 PubMedCrossRefGoogle Scholar
  97. Williams B, Kabbage M, Britt R, Dickman MB (2010) AtBAG7, an Arabidopsis Bcl-2-associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response. Proc Natl Acad Sci USA 107:6088–6093. doi: 10.1073/pnas.0912670107 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wilson ZA, Zhang DB (2009) From arabidopsis to rice: pathways in pollen development. J Exp Bot 60:1479–1492. doi: 10.1093/jxb/erp095 PubMedCrossRefGoogle Scholar
  99. Yamamoto M, Maruyama D, Endo T, Nishikawa S (2008) Arabidopsis thaliana has a set of J proteins in the endoplasmic reticulum that are conserved from yeast to animals and plants. Plant Cell Physiol 49:1547–1562. doi: 10.1093/pcp/pcn119 PubMedCrossRefGoogle Scholar
  100. Yang K-Z, Xia C, Liu X-L et al (2009) A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J 57:870–882. doi: 10.1111/j.1365-313X.2008.03732.x PubMedCrossRefGoogle Scholar
  101. Yang ZT, Lu SJ, Wang MJ et al (2014a) A plasma membrane-tethered transcription factor, NAC062/ANAC062/NTL6, mediates the unfolded protein response in Arabidopsis. Plant J 79:1033–1043. doi: 10.1111/tpj.12604 PubMedCrossRefGoogle Scholar
  102. Yang ZT, Wang MJ, Sun L et al (2014b) The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet 10:e1004243. doi: 10.1371/journal.pgen.1004243 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yoshimoto K, Hanaoka H, Sato S et al (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16:2967–2983. doi: 10.1105/tpc.104.025395 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhao C, Shono M, Sun A et al (2007) Constitutive expression of an endoplasmic reticulum small heat shock protein alleviates endoplasmic reticulum stress in transgenic tomato. J Plant Physiol 164:835–841. doi: 10.1016/j.jplph.2006.06.004 PubMedCrossRefGoogle Scholar
  105. Zou J, Song L, Zhang W et al (2009) Comparative proteomic analysis of Arabidopsis mature pollen and germinated pollen. J Integr Plant Biol 51:438–455. doi: 10.1111/j.1744-7909.2009.00823.x PubMedCrossRefGoogle Scholar
  106. Zuppini A, Navazio L, Mariani P (2004) Endoplasmic reticulum stress-induced programmed cell death in soybean cells. J Cell Sci 117:2591–2598. doi: 10.1242/jcs.01126 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biosciences, Molecular Cell Biology of PlantsGoethe UniversityFrankfurt am MainGermany
  2. 2.Cluster of Excellence FrankfurtGoethe UniversityFrankfurt am MainGermany
  3. 3.Buchmann Institute for Molecular Life Sciences (BMLS)Goethe UniversityFrankfurt am MainGermany

Personalised recommendations