Plant Reproduction

, Volume 29, Issue 1–2, pp 53–65 | Cite as

Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function

  • Puneet Paul
  • Sascha Röth
  • Enrico SchleiffEmail author
Part of the following topical collections:
  1. Pollen development and stress response

Key message

Protein translocation.


Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids—the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the “simple thylakoid system” existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.


Mitochondria Plastids Peroxisomes Endoplasmic reticulum Vesicle transport system Organellar proteins 



The authors would like to thank Sotirios Fragkostefanakis and Klaus-Dieter Scharf for helpful comments and SPOT-ITN consortium for the support. The work is supported by SPOT-ITN/Marie-Curie to ES.

Supplementary material

497_2016_274_MOESM1_ESM.xlsx (54 kb)
Expression values of the identified proteins corresponding to organellar protein translocation and vesicle transport (Paul et al. 2013, 2014). The expression values were taken from (Honys and Twell 2004). UNM: uninucleate microspores, BCP: bicellular pollen, TCP: tricellular pollen, MPG: Mature pollen grain, LEF: leaf; STM: stem; ROT: root (XLSX 53 kb)


  1. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460. doi: 10.1146/annurev-arplant-042809-112312 PubMedCrossRefGoogle Scholar
  2. Bergman P, Edqvist J, Farbos I, Glimelius K (2000) Male-sterile tobacco displays abnormal mitochondrial atp1 transcript accumulation and reduced floral ATP/ADP ratio. Plant Mol Biol 42:531–544PubMedCrossRefGoogle Scholar
  3. Bernard C, Traub M, Kunz H (2011) Equilibrative nucleoside transporter 1 (ENT1) is critical for pollen germination and vegetative growth in Arabidopsis. J Exp Bot 62:4627–4637. doi: 10.1093/jxb/err183 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Blackmore S, Wortley AH, Skvarla JJ, Rowley JR (2007) Pollen wall development in flowering plants. New Phytol 174:483–498. doi: 10.1111/j.1469-8137.2007.02060.x PubMedCrossRefGoogle Scholar
  5. Boisson-Dernier A, Frietsch S, Kim T (2008) The peroxin loss-of-function mutation abstinence by mutual consent disrupts male–female gametophyte recognition. Curr Biol 18:63–68PubMedCrossRefGoogle Scholar
  6. Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166PubMedCrossRefGoogle Scholar
  7. Borg M, Brownfield L, Twell D (2009) Male gametophyte development: a molecular perspective. J Exp Bot 60:1465–1478. doi: 10.1093/jxb/ern355 PubMedCrossRefGoogle Scholar
  8. Certal A, Almeida R, Carvalho L (2008) Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–634. doi: 10.1105/tpc.106.047423 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chaiwongsar S, Otegui M (2006) The protein kinase genes MAP3K ɛ 1 and MAP3K ɛ 2 are required for pollen viability in Arabidopsis thaliana. Plant J 48:193–205PubMedCrossRefGoogle Scholar
  10. Cheng J, Wang Z, Yao F et al (2015) Down-regulating CsHT1, a cucumber pollen-specific hexose transporter, inhibits pollen germination, tube growth, and seed development. Plant Physiol 168:635–647. doi: 10.1104/pp.15.00290 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cheung A, Chen C, Glaven R (2002) Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth. Plant Cell 14:945–962PubMedPubMedCentralCrossRefGoogle Scholar
  12. Coimbra S, Costa M (2009) Pollen grain development is compromised in Arabidopsis agp6 agp11 null mutants. J Exp Bot 60:3133–3142. doi: 10.1093/jxb/erp148 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cole RA, Synek L, Zarsky V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138:2005–2018PubMedPubMedCentralCrossRefGoogle Scholar
  14. Conger R, Chen Y, Fornaciari S et al (2011) Evidence for the involvement of the Arabidopsis SEC24A in male transmission. J Exp Bot 62:4917–4926. doi: 10.1093/jxb/err174 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Conley C, Hanson M (1995) How do alterations in plant mitochondrial genomes disrupt pollen development? J Bioenerg Biomembr 27:447–457PubMedCrossRefGoogle Scholar
  16. Costa M, Nobre MS, Becker JD et al (2013) Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC Plant Biol 13:7. doi: 10.1186/1471-2229-13-7 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dai S, Li L, Chen T et al (2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6:2504–2529. doi: 10.1002/pmic.200401351 PubMedCrossRefGoogle Scholar
  18. Dal Bosco C, Dovzhenko A, Liu X et al (2012) The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J 71:860–870. doi: 10.1111/j.1365-313X.2012.05037.x PubMedCrossRefGoogle Scholar
  19. de Graaf BHJ, Cheung AY, Andreyeva T et al (2005) Rab11 GTPase-regulated membrane trafficking is crucial for tip focused pollen tube growth in tobacco. Plant Cell 17:2564–2579PubMedPubMedCentralCrossRefGoogle Scholar
  20. De Paepe R, Forchioni A, Chétrit P, Vedel F (1993) Specific mitochondrial proteins in pollen: presence of an additional ATP synthase beta subunit. Proc Natl Acad Sci USA 90:5934–5938PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dettmer J, Schubert D (2005) Essential role of the V-ATPase in male gametophyte development. Plant J 41:117–124PubMedCrossRefGoogle Scholar
  22. Ding Z, Wang B, Moreno I et al (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941. doi: 10.1038/ncomms1941 PubMedCrossRefGoogle Scholar
  23. Dong X, Hong Z, Sivaramakrishnan M et al (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42:315–328. doi: 10.1111/j.1365-313X.2005.02379.x PubMedCrossRefGoogle Scholar
  24. Duden R (2009) ER-to-Golgi transport: COP I and COP II function. Mol Membr Biol 20:197–207CrossRefGoogle Scholar
  25. Dun X, Zhou Z, Xia S et al (2011) BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J 68:532–545. doi: 10.1111/j.1365-313X.2011.04708.x PubMedCrossRefGoogle Scholar
  26. El-Kasmi F, Pacher T, Strompen G et al (2011) Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgi-stack integrity. Plant J 66:268–279. doi: 10.1111/j.1365-313X.2011.04487.x PubMedCrossRefGoogle Scholar
  27. Footitt S, Dietrich D, Fait A (2007) The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol 144:1467–1480PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fujiki Y, Yoshimoto K, Ohsumi Y (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol 143:1132–1139PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fujiwara M, Yoshioka Y (2012) Visualization of plastid movement in the pollen tube of Arabidopsis thaliana. Plant Signal Behav 7:34–37. doi: 10.4161/psb.7.1.18484 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gui CP, Dong X, Liu HK et al (2014) Overexpression of the tomato pollen receptor kinase LePRK1 rewires pollen tube growth to a blebbing mode. Plant Cell 26:3538–3555. doi: 10.1105/tpc.114.127381 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Guo F, McCubbin AG (2012) The pollen-specific R-SNARE/longin PiVAMP726 mediates fusion of endo- and exocytic compartments in pollen tube tip growth. J Exp Bot 63:3083–3095. doi: 10.1093/jxb/ers023 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gutkowska M, Wnuk M, Nowakowska J et al (2015) Rab geranylgeranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis. J Exp Bot 66:213–224. doi: 10.1093/jxb/eru412 PubMedCrossRefGoogle Scholar
  33. Hála M, Cole R, Synek L et al (2008) An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. Plant Cell 20(5):1330–1345. doi: 10.1105/tpc.108.059105 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(Suppl):S154–S169. doi: 10.1105/tpc.015966 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Harrison-Lowe NJ, Olsen LJ (2008) Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy 4:339–348PubMedCrossRefGoogle Scholar
  36. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. doi: 10.1038/nature10317 PubMedCrossRefGoogle Scholar
  37. He S, Abad AR, Gelvin SB, Mackenzie SA (1996) A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA 93:11763–11768PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hinnah SC, Hill K, Wagner R et al (1997) Reconstitution of a chloroplast protein import channel. EMBO J 16:7351–7360. doi: 10.1093/emboj/16.24.7351 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hoekstra FA (1979) Mitochondrial development and activity of binucleate and trinucleate pollen during germination in vitro. Planta 145:25–36. doi: 10.1007/BF00379924 PubMedCrossRefGoogle Scholar
  40. Holdaway-Clarke TL, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563. doi: 10.1046/j.1469-8137.2003.00847.x CrossRefGoogle Scholar
  41. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85PubMedPubMedCentralCrossRefGoogle Scholar
  42. Horn R, Gupta K, Colombo N (2014) Mitochondrion role in molecular basis of cytoplasmic male sterility. Mitochondrion B. doi: 10.1016/j.mito.2014.04.004 Google Scholar
  43. Hu J, Wang K, Huang W et al (2012) The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 24:109–122. doi: 10.1105/tpc.111.093211 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149. doi: 10.1152/physrev.00059.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hwang JU, Vernoud V, Szumlanski A et al (2008) A tip-localized RhoGAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex. Curr Biol 18:1907–1916. doi: 10.1016/j.cub.2008.11.057 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Jakobsen MK, Poulsen LR, Schulz A et al (2005) Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a Type V P-type ATPase. Genes Dev. doi: 10.1101/gad.357305 PubMedPubMedCentralGoogle Scholar
  47. Jarvis P, López-Juez E (2013) Biogenesis and homeostasis of chloroplasts and other plastids. Nat Rev Mol Cell Biol 14:787–802. doi: 10.1038/nrm3702 PubMedCrossRefGoogle Scholar
  48. Johns C, Lu M, Lyznik A, Mackenzie S (1992) A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants. Plant Cell 4:435–449. doi: 10.1105/tpc.4.4.435 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kazama T, Toriyama K (2014) A fertility restorer gene, Rf4, widely used for hybrid rice breeding encodes a pentatricopeptide repeat protein. Rice (N Y). 7:28. doi: 10.1186/s12284-014-0028-z PubMedCentralGoogle Scholar
  50. Kessler F, Schnell D (2009) Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Curr Opin Cell Biol 21:494–500. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  51. Kouranov A, Chen X, Fuks B, Schnell D (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143:991–1002. doi: 10.1083/jcb.143.4.991 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Krichevsky A, Kozlovsky SV, Tian G-W et al (2007) How pollen tubes grow. Dev Biol 303:405–420. doi: 10.1016/j.ydbio.2006.12.003 PubMedCrossRefGoogle Scholar
  53. Kuang A, Musgrave ME (1996) Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana. Protoplasma 194:81–90. doi: 10.1007/BF01273170 PubMedCrossRefGoogle Scholar
  54. Lalanne E, Mathieu C, Vedel F, De Paepe R (1998) Tissue-specific expression of genes encoding isoforms of the mitochondrial ATPase beta subunit in Nicotiana sylvestris. Plant Mol Biol 38:885–888PubMedCrossRefGoogle Scholar
  55. Lee S, Warmke H (1979) Organelle size and number in fertile and T-cytoplasmic male-sterile corn. Am J Bot 66:141–146CrossRefGoogle Scholar
  56. Lee C, Swatek K, McClure B (2008a) Pollen proteins bind to the C-terminal domain of Nicotiana alata pistil arabinogalactan proteins. J Biol Chem 283:26965–26973. doi: 10.1074/jbc.M804410200 PubMedCrossRefGoogle Scholar
  57. Lee YJ, Szumlanski A, Nielsen E, Yang Z (2008b) Rho-GTPase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181:1155–1168. doi: 10.1083/jcb.200801086 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lee C, Kim S, McClure B (2009) A pollen protein, NaPCCP, that binds pistil arabinogalactan proteins also binds phosphatidylinositol 3-phosphate and associates with the pollen tube endomembrane. Plant Physiol 149:791–802. doi: 10.1104/pp.108.127936 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Leroch M, Neuhaus H (2008) Identification of a novel adenine nucleotide transporter in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:438–451. doi: 10.1105/tpc.107.057554 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Li W-Q, Zhang X-Q, Xia C et al (2010) MALE GAMETOPHYTE DEFECTIVE 1, encoding the FAd subunit of mitochondrial F1F0-ATP synthase, is essential for pollen formation in Arabidopsis thaliana. Plant Cell Physiol 51:923–935. doi: 10.1093/pcp/pcq066 PubMedCrossRefGoogle Scholar
  61. Li J, Pandeya D, Jo Y et al (2013) Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper. Planta 237:1097–1109. doi: 10.1007/s00425-012-1824-6 PubMedCrossRefGoogle Scholar
  62. Li X-R, Li H-J, Yuan L et al (2014) Arabidopsis DAYU/ABERRANT PEROXISOME MORPHOLOGY9 is a key regulator of peroxisome biogenesis and plays critical roles during pollen maturation and germination in planta. Plant Cell 26:619–635. doi: 10.1105/tpc.113.121087 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liao F, Wang L, Yang LB et al (2010) NtGNL1 plays an essential role in pollen tube tip growth and orientation likely via regulation of post-Golgi trafficking. PLoS ONE 5:e13401. doi: 10.1371/journal.pone.0013401 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lin Y, Yang Z (1997) Inhibition of pollen tube elongation by microinjected anti-Rop1Ps antibodies suggests a crucial role for Rho-type GTPases in the control of tip growth. Plant Cell 9:1647–1659PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lin S, Dong H, Zhang F et al (2014) BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Ann Bot 113:777–788. doi: 10.1093/aob/mct315 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Liu X, Qu X, Jiang Y et al (2015) Profilin regulates apical actin polymerization to control polarized pollen tube growth. Mol Plant 8:1694–1709. doi: 10.1016/j.molp.2015.09.013 PubMedCrossRefGoogle Scholar
  67. Lobstein E, Guyon A, Férault M et al (2004) The putative Arabidopsis homolog of yeast vps52p is required for pollen tube elongation, localizes to Golgi, and might be involved in vesicle trafficking. Plant Physiol 135:1480–1490PubMedPubMedCentralCrossRefGoogle Scholar
  68. Matsushima R, Hu Y, Toyoda K, Sodmergen Sakamoto W (2008) The model plant Medicago truncatula exhibits biparental plastid inheritance. Plant Cell Physiol 49:81–91PubMedCrossRefGoogle Scholar
  69. Matsushima R, Tang LY, Zhang L et al (2011) A conserved, Mg2+-dependent exonuclease degrades organelle DNA during Arabidopsis pollen development. Plant Cell 23:1608–1624. doi: 10.1105/tpc.111.084012 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Michard E, Alves F, Feijó JA (2009) The role of ion fluxes in polarized cell growth and morphogenesis: the pollen tube as an experimental paradigm. Int J Dev Biol 53:1609–1622. doi: 10.1387/ijdb.072296em PubMedCrossRefGoogle Scholar
  71. Moore I, Diefenthal T, Zarsky V et al (1997) A homolog of the mammalian GTPase Rab2 is present in Arabidopsis and is expressed predominantly in pollen grains and seedlings. Proc Natl Acad Sci USA 94:762–767PubMedPubMedCentralCrossRefGoogle Scholar
  72. Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM et al (2009) Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol 151:541–558. doi: 10.1104/pp.109.143701 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Murthy UMN, Ollagnier-de-Choudens S, Sanakis Y et al (2007) Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and Nad synthesis. J Biol Chem 282:18254–18264CrossRefGoogle Scholar
  74. Nagata N, Saito C, Sakai A et al (1999) The selective increase or decrease of organellar DNA in generative cells just after pollen mitosis one controls cytoplasmic inheritance. Planta 209:53–65PubMedCrossRefGoogle Scholar
  75. Oreb M, Tews I, Schleiff E (2008) Policing Tic “n” Toc, the doorway to chloroplasts. Trends Cell Biol 18:19–27. doi: 10.1016/j.tcb.2007.10.002 PubMedCrossRefGoogle Scholar
  76. Pacini E, Jacquard C, Clément C (2011) Pollen vacuoles and their significance. Planta 234:217–227. doi: 10.1007/s00425-011-1462-4 PubMedCrossRefGoogle Scholar
  77. Park M, Song K, Reichardt I (2013) Arabidopsis μ-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proc Natl Acad Sci USA 110:10318–10323. doi: 10.1073/pnas.1300460110 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Paul P, Simm S, Blaumeiser A et al (2013) The protein translocation systems in plants—composition and variability on the example of Solanum lycopersicum. BMC Genom 14:189. doi: 10.1186/1471-2164-14-189 CrossRefGoogle Scholar
  79. Paul P, Simm S, Mirus O et al (2014) The complexity of vesicle transport factors in plants examined by orthology search. PLoS ONE 9:e97745. doi: 10.1371/journal.pone.0097745 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Paul P, Chaturvedi P, Selymesi M et al (2015) The membrane proteome of male gametophyte in Solanum lycopersicum. J Proteomics. doi: 10.1016/j.jprot.2015.10.009 PubMedGoogle Scholar
  81. Peng J, Ilarslan H, Wurtele ES, Bassham DC (2011) AtRabD2b and AtRabD2c have overlapping functions in pollen development and pollen tube growth. BMC Plant Biol 11:25. doi: 10.1186/1471-2229-11-25 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Pertl H, Schulze WX, Obermeyer G (2009) The pollen organelle membrane proteome reveals highly spatial-temporal dynamics during germination and tube growth of lily pollen. J Proteome Res 8:5142–5152. doi: 10.1021/pr900503f PubMedCrossRefGoogle Scholar
  83. Pierson E, Miller D, Callaham D (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174:160–173PubMedCrossRefGoogle Scholar
  84. Prabhakar V, Löttgert T, Geimer S (2010) Phosphoenolpyruvate provision to plastids is essential for gametophyte and sporophyte development in Arabidopsis thaliana. Plant Cell 22:2594–2617. doi: 10.1105/tpc.109.073171 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Qi B, Doughty J, Hooley R (2013) A Golgi and tonoplast localized S-acyl transferase is involved in cell expansion, cell division, vascular patterning and fertility in Arabidopsis. New Phytol 200:444–456. doi: 10.1111/nph.12385 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Qin G, Ma Z, Zhang L et al (2007) Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 17:249–263PubMedGoogle Scholar
  87. Quilichini TD, Grienenberger E, Douglas CJ (2015) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170–182. doi: 10.1016/j.phytochem.2014.05.002 PubMedCrossRefGoogle Scholar
  88. Reis K, Fransson A, Aspenström P (2009) The Miro GTPases: at the heart of the mitochondrial transport machinery. FEBS Lett 583:1391–1398. doi: 10.1016/j.febslet.2009.04.015 PubMedCrossRefGoogle Scholar
  89. Reyes F, León G, Donoso M et al (2010) The nucleotide sugar transporters AtUTr1 and AtUTr3 are required for the incorporation of UDP-glucose into the endoplasmic reticulum, are essential for pollen development and are needed for embryo sac progress in Arabidopsis thaliana. Plant J 61:423–435. doi: 10.1111/j.1365-313X.2009.04066.x PubMedCrossRefGoogle Scholar
  90. Roy S, Jauh G, Hepler P, Lord E (1998) Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube. Planta 204:450–458PubMedCrossRefGoogle Scholar
  91. Sanderfoot A, Pilgrim M, Adam L, Raikhel N (2001) Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell. 13:659–666PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schilmiller A, Koo A, Howe G (2007) Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143:812–824PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schleiff E, Becker T (2010) Common ground for protein translocation: access control for mitochondria and chloroplasts. Nat Rev Mol Cell Biol 12:48–59. doi: 10.1038/nrm3027 PubMedCrossRefGoogle Scholar
  94. Schneider A, Stelljes C, Adams C (2015) Low frequency paternal transmission of plastid genes in Brassicaceae. Transgenic Res 24:267–277. doi: 10.1007/s11248-014-9842-8 PubMedCrossRefGoogle Scholar
  95. Scholz-Starke J, Büttner M, Sauer N (2003) AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol 131:70–77PubMedPubMedCentralCrossRefGoogle Scholar
  96. Schünemann D (2007) Mechanisms of protein import into thylakoids of chloroplasts. Biol Chem 388:907–915. doi: 10.1515/BC.2007.111 PubMedCrossRefGoogle Scholar
  97. Selinski J, Scheibe R (2014) Pollen tube growth: where does the energy come from? Plant Signal Behav 9:e977200PubMedPubMedCentralCrossRefGoogle Scholar
  98. Shi J, Cui M, Yang L et al (2015) Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci 20:741–753. doi: 10.1016/j.tplants.2015.07.010 PubMedCrossRefGoogle Scholar
  99. Silva PA, Ul-Rehman R, Rato C et al (2010) Asymmetric localization of Arabidopsis SYP124 syntaxin at the pollen tube apical and sub-apical zones is involved in tip growth. BMC Plant Biol 10:179. doi: 10.1186/1471-2229-10-179 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Skalitzky C, Martin J, Harwood J (2011) Plastids contain a second sec translocase system with essential functions. Plant Physiol 155:354–369. doi: 10.1104/pp.110.166546 PubMedCrossRefGoogle Scholar
  101. Song XF, Yang CY, Liu J, Yang WC (2006) RPA, a class II ARFGAP protein, activates ARF1 and U5 and plays a role in root hair development in Arabidopsis. Plant Physiol 141:966–976PubMedPubMedCentralCrossRefGoogle Scholar
  102. Soto G, Fox R, Ayub N et al (2010) TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J 64:1038–1047. doi: 10.1111/j.1365-313X.2010.04395.x PubMedCrossRefGoogle Scholar
  103. Spang A (2008) The life cycle of a transport vesicle. Cell Mol Life Sci 65:2781–2789. doi: 10.1007/s00018-008-8349-y PubMedCrossRefGoogle Scholar
  104. Sparla F, Costa A, Lo Schiavo F et al (2006) Redox regulation of a novel plastid-targeted beta-amylase of Arabidopsis. Plant Physiol 141:840–850PubMedPubMedCentralCrossRefGoogle Scholar
  105. Steer MW, Steer JM (1989) Pollen tube tip growth. New Phytol 111:323–358. doi: 10.1111/j.1469-8137.1989.tb00697.x CrossRefGoogle Scholar
  106. Steinhorst L, Kudla J (2013) Calcium-a central regulator of pollen germination and tube growth. Biochim Biophys Acta 1833:1573–1581. doi: 10.1016/j.bbamcr.2012.10.009 PubMedCrossRefGoogle Scholar
  107. Steinhorst L, Mähs A, Ischebeck T, Zhang C (2015) Vacuolar CBL-CIPK12 Ca(2+)-sensor-kinase complexes are required for polarized pollen tube growth. Curr Biol 25:1475–1482. doi: 10.1016/j.cub.2015.03.053 PubMedCrossRefGoogle Scholar
  108. Strompen G, Dettmer J, Stierhof YD et al (2005) Arabidopsis vacuolar H-ATPase subunit E isoform 1 is required for Golgi organization and vacuole function in embryogenesis. Plant J 41:125–132PubMedCrossRefGoogle Scholar
  109. Synek L, Zarsky V, Fowler JE (2005) SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth. Plant Physiol 138:2005–2018PubMedPubMedCentralCrossRefGoogle Scholar
  110. Synek L, Sekeres J, Zarsky V (2014) The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. Front Plant Sci 4:543. doi: 10.3389/fpls.2013.00543 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Szumlanski AL, Nielsen E (2009) The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana. Plant Cell 21:526–544. doi: 10.1105/tpc.108.060277 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Tanaka Y, Nishimura K, Kawamukai M et al (2013) Redundant function of two Arabidopsis COPII components, AtSec24B and AtSec24C, is essential for male and female gametogenesis. Planta 238:561–575. doi: 10.1007/s00425-013-1913-1 PubMedCrossRefGoogle Scholar
  113. Tang LY, Nagata N, Matsushima R et al (2009) Visualization of plastids in pollen grains: involvement of FtsZ1 in pollen plastid division. Plant Cell Physiol 50:904–908. doi: 10.1093/pcp/pcp042 PubMedCrossRefGoogle Scholar
  114. Touzet P, Meyer E (2014) Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion B. doi: 10.1016/j.mito.2014.04.009 Google Scholar
  115. Twell D, Oh S, Honys D (2006) Pollen development, a genetic and transcriptomic view. Plant Cell Monogr 3:15–45CrossRefGoogle Scholar
  116. Ul-Rehman R, Silva PA, Malhó R (2011) Localization of Arabidopsis SYP125 syntaxin in the plasma membrane sub-apical and distal zones of growing pollen tubes. Plant Signal Behav 6:665–670PubMedPubMedCentralCrossRefGoogle Scholar
  117. Van Aelst AC, Pierson ES, Van Went JL, Cresti M (2008) Ultrastructural changes of Arabidopsis thaliana pollen during final maturation and rehydration. Zygote 1:173–179. doi: 10.1017/S096719940000143X Google Scholar
  118. Van Camp W, Hérouart D, Willekens H et al (1996) Tissue-specific activity of two manganese superoxide dismutase promoters in transgenic tobacco. Plant Physiol 112:525–535PubMedPubMedCentralCrossRefGoogle Scholar
  119. Van Damme D, Coutuer S, De Rycke R et al (2006) Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell 18:3502–3518PubMedPubMedCentralCrossRefGoogle Scholar
  120. Verbitskiy D, Zehrmann A, Härtel B et al (2012) Two related RNA-editing proteins target the same sites in mitochondria of Arabidopsis thaliana. J Biol Chem 287:38064–38072PubMedPubMedCentralCrossRefGoogle Scholar
  121. Verma D (2001) Cytokinesis and building of the cell plate in plants. Annu Rev Plant Physiol Plant Mol Biol 52:751–784PubMedCrossRefGoogle Scholar
  122. Vögtle F-N, Meisinger C (2012) Sensing mitochondrial homeostasis: the protein import machinery takes control. Dev Cell 23:234–236. doi: 10.1016/j.devcel.2012.07.018 PubMedCrossRefGoogle Scholar
  123. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252. doi: 10.1016/j.tplants.2004.03.006 PubMedCrossRefGoogle Scholar
  124. Wang D, Zhang Q, Liu Y, Lin Z (2010a) The levels of male gametic mitochondrial DNA are highly regulated in angiosperms with regard to mitochondrial inheritance. Plant Cell 22:2402–2416. doi: 10.1105/tpc.109.071902 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wang H, Tse Y, Law A, Sun S (2010b) Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. Plant J 61:826–838. doi: 10.1111/j.1365-313X.2009.04111.x PubMedCrossRefGoogle Scholar
  126. Wang W, Zhang L, Xing S et al (2012) Arabidopsis AtVPS15 plays essential roles in pollen germination possibly by interacting with AtVPS34. J Genet Genomic 39:81–92. doi: 10.1016/j.jgg.2012.01.002 CrossRefGoogle Scholar
  127. Wang S, Zhang G, Zhang Y (2015) Comparative studies of mitochondrial proteomics reveal an intimate protein network of male sterility in wheat (Triticum aestivum L.). J Exp Bot 66:6191–6203. doi: 10.1093/jxb/erv322 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Wickner W, Schekman R (2005) Protein translocation across biological membranes. Science 310:1452–1456. doi: 10.1126/science.1113752 PubMedCrossRefGoogle Scholar
  129. Woellhaf MW, Hansen KG, Garth C, Herrmann JM (2014) Import of ribosomal proteins into yeast mitochondria. Biochem Cell Biol 92:489–498. doi: 10.1139/bcb-2014-0029 PubMedCrossRefGoogle Scholar
  130. Wudick MM, Luu D-T, Tournaire-Roux C et al (2014) Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction. Plant Physiol 164:1697–1706. doi: 10.1104/pp.113.228700 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Xu N, Gao X, Zhao X, Zhu D (2011) Arabidopsis AtVPS15 is essential for pollen development and germination through modulating phosphatidylinositol 3-phosphate formation. Plant Mol Biol 77:251–260. doi: 10.1007/s11103-011-9806-9 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yamamoto M, Maruyama D, Endo T, Nishikawa S (2008a) Arabidopsis thaliana has a set of J proteins in the endoplasmic reticulum that are conserved from yeast to animals and plants. Plant Cell Physiol 49:1547–1562. doi: 10.1093/pcp/pcn119 PubMedCrossRefGoogle Scholar
  133. Yamamoto MP, Shinada H, Onodera Y et al (2008b) A male sterility-associated mitochondrial protein in wild beets causes pollen disruption in transgenic plants. Plant J 54:1027–1036. doi: 10.1111/j.1365-313X.2008.03473.x PubMedCrossRefGoogle Scholar
  134. Yamaoka S, Leaver CJ (2008) EMB2473/MIRO1, an Arabidopsis Miro GTPase, is required for embryogenesis and influences mitochondrial morphology in pollen. Plant Cell 20:589–601. doi: 10.1105/tpc.107.055756 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Yu Y, Li Y, Li L, Lin J (2009) Overexpression of PwTUA1, a pollen-specific tubulin gene, increases pollen tube elongation by altering the distribution of α-tubulin and promoting vesicle transport. J Exp Bot 60:2737–2749. doi: 10.1093/jxb/erp143 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Yuan L, Graff L, Loqué D et al (2009) AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis. Plant Cell Physiol 50:13–25. doi: 10.1093/pcp/pcn186 PubMedCrossRefGoogle Scholar
  137. Zhang Y, McCormick S (2010) The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. Sex Plant Reprod 23:87–93. doi: 10.1007/s00497-009-0118-z PubMedCrossRefGoogle Scholar
  138. Zhao Z, Assmann S (2011) The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. J Exp Bot 62:5179–5189. doi: 10.1093/jxb/err223 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zouhar J, Rojo E, Bassham DC (2009) AtVPS45 is a positive regulator of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar cargo. Plant Physiol 149:1668–1678. doi: 10.1104/pp.108.134361 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biosciences, Molecular Cell Biology of PlantsGoethe UniversityFrankfurt Am MainGermany
  2. 2.Cluster of Excellence FrankfurtGoethe UniversityFrankfurt Am MainGermany
  3. 3.Buchmann Institute for Molecular Life Sciences (BMLS)Goethe UniversityFrankfurt Am MainGermany

Personalised recommendations