Skip to main content
Log in

Polyploids as a “model system” for the study of heterosis

  • Review
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

Heterosis research over the past century has focused primarily on diploid plants and animals. This is despite the fact that most heterotic organisms contain polyploid events in their recent and/or ancient past and various important crop species are heterotic polyploids. We present an argument for the study of heterosis within polyploid systems and give examples of how their study can improve current hypotheses and generate new ones. Polyploid systems allow experiments not possible in diploids but the insights gained must be incorporated into models to explain heterosis at all levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander DE, Sonnemaker EH (1961) Inbreeding depression in autotetraploid maize. Maize Genet Cooper Newsl 35:45

    Google Scholar 

  • Bennett JH (1976) Expectations for inbreeding depression on self-fertilization of tetraploids. Biometrics 32(2):449–452. doi:10.2307/2529514

    Article  CAS  PubMed  Google Scholar 

  • Bingham ET, Groose RW, Woodfield DR, Kidwell KK (1994) Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci 34(4):823–829

    Article  Google Scholar 

  • Birchler JA (2013) Genetic rules of heterosis in plants. In: polyploid and hybrid genomics. Wiley, pp 313-321. doi:10.1002/9781118552872.ch19

  • Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA (2010) Heterosis. Plant Cell 22(7):2105–2112. doi:10.1105/tpc.110.076133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruce AB (1910) The mendelian theory of heredity and the augmentation of vigor. Science 32(827):627–628. doi:10.2307/1635723

    Article  CAS  PubMed  Google Scholar 

  • Busbice T, Wilsie CP (1966) Inbreeding depression and heterosis in autotetraploids with application to Medicago sativa L. Euphytica 15(1):52–67. doi:10.1007/BF00024079

    Google Scholar 

  • Chang PL, Dilkes BP, McMahon M, Comai L, Nuzhdin SV (2010) Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biol 11(12):R125. doi:10.1186/gb-2010-11-12-r125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collares-Pereira MJ, Matos I, Morgado-Santos M, Coelho MM (2013) Natural pathways towards polyploidy in animals: the Squalius alburnoides fish complex as a model system to study genome size and genome reorganization in polyploids. Cytogenet Genome Res 140(2–4):97–116

    Article  CAS  PubMed  Google Scholar 

  • Darwin CR (1876) The effects of cross and self fertilisation in the vegetable kingdom. John Murray, London

    Google Scholar 

  • Dewey DR (1966) Inbreeding depression in diploid, tetraploid and hexaploid crested wheatgrass. Crop Sci 6:144–147

    Article  Google Scholar 

  • Dewey DR (1969) Inbreeding depression in diploid and induced-autotetraploid crested wheatgrass. Crop Sci 9(5):592–595

    Article  Google Scholar 

  • Duvick DN (2001) Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet 2(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • East EM (1936) Heterosis. Genetics 21(4):375–397

    CAS  PubMed  Google Scholar 

  • Fisher RA (1949) The theory of inbreeding, 2nd edn. Academic Press, New York

    Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186(1):184–193. doi:10.1111/j.1469-8137.2009.03107.x

    Article  CAS  PubMed  Google Scholar 

  • Freeling M, Woodhouse MR, Subramaniam S, Turco G, Lisch D, Schnable JC (2012) Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr Opin Plant Biol 15(2):131–139. doi:10.1016/j.pbi.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  • Groose RW, Talbert LE, Kojis WP, Bingham ET (1989) Progressive heterosis in autotetraploid alfalfa: studies using two types of inbreds. Crop Sci 29(5):1173–1177. doi:10.2135/cropsci1989.0011183X002900050015x

    Article  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19(8):1419–1428. doi:10.1101/gr.091678.109

    Article  CAS  PubMed  Google Scholar 

  • Hollister JD, Smith LM, Guo Y-L, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute to gene expression divergence between arabidopsis thaliana and arabidopsis lyrata. Proc Natl Acad Sci 108(6):2322–2327. doi:10.1073/pnas.1018222108

    Article  CAS  PubMed  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    CAS  PubMed  Google Scholar 

  • Kato A, Birchler JA (2006) Induction of tetraploid derivatives of maize inbred lines by nitrous oxide gas treatment. J Heredity 97:39–44

    Article  CAS  Google Scholar 

  • Keeble F, Pellew C (1910) The mode of inheritance of stature and of time of flowering in peas (Pisum sativum). J Genet 1:47–56

    Article  Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23(2):60–66. doi:10.1016/j.tig.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  • Mayfield-Jones D, Washburn JD, Arias T, Edger PP, Pires JC, Conant GC (2013) Watching the grin fade: tracing the effects of polyploidy on different evolutionary time scales. Semin Cell Dev Biol 24:320–331. doi:10.1016/j.semcdb.2013.02.002

    Article  PubMed  Google Scholar 

  • Miller M, Zhang C, Chen ZJ (2012) Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3: Genes|Genomes|Genetics 2 (4):505–513. doi:10.1534/g3.112.002162

  • Mok DWS, Peloquin SJ (1975) Breeding value of 2n pollen (diplandroids) in tetraploid x diploid crosses in potatoes. Theor Appl Genet 46(6):307–314. doi:10.1007/BF00281153

    CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Book  Google Scholar 

  • Riddle NC, Birchler JA (2008) Comparative analysis of inbred and hybrid maize at the diploid and tetraploid levels. Theor Appl Genet 116:563–576

    Article  PubMed  Google Scholar 

  • Riddle NC, Kato A, Birchler JA (2006) Genetic variation for the response to ploidy change in Zea mays L. Theor Appl Genet 114:101–111

    Article  PubMed  Google Scholar 

  • Riddle NC, Jinag H, An L, Doerge RW, Birchler JA (2010) Gene expression analysis at the intersection of ploidy and hybridity in maize. Theor Appl Genet 120:341–353

    Article  CAS  PubMed  Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108(10):4069–4074. doi:10.1073/pnas.1101368108

    Article  CAS  PubMed  Google Scholar 

  • Shull GH (1911) The genotypes of maize. Am Nat 45(532):234–252. doi:10.2307/2455739

    Article  Google Scholar 

  • Shull GH (1948) What is “Heterosis”? Genetics 33(5):439–446

    CAS  PubMed  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348. doi:10.3732/ajb.0800079

    Article  PubMed  Google Scholar 

  • Yao H, Kato A, Mooney B, Birchler JA (2011) Phenotypic and gene expression analysis of a ploidy series of maize inbred Oh43. Plant Mol Biol 75:237–251

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Dogra Gray A, Auger DL, Birchler JA (2013) Genomic dosage effects on heterosis in triploid maize. Proc Natl Acad Sci USA 110(7):2665–2669. doi:10.1073/pnas.1221966110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research supported by National Science Foundation grant DBI 0733857.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Additional information

Communicated by Frederic Berger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Washburn, J.D., Birchler, J.A. Polyploids as a “model system” for the study of heterosis. Plant Reprod 27, 1–5 (2014). https://doi.org/10.1007/s00497-013-0237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-013-0237-4

Keywords

Navigation