Advertisement

Plant Reproduction

, Volume 27, Issue 1, pp 19–29 | Cite as

Genetic and cellular analysis of cross-incompatibility in Zea mays

  • Yongxian Lu
  • Jerry L. Kermicle
  • Matthew M. S. EvansEmail author
Original Article

Abstract

Three genetic systems conferring cross-incompatibility have been described in Zea mays: Teosinte crossing barrier1-strong (Tcb1-s) found in teosinte, and Gametophyte factor1-strong (Ga1-s) and Ga2-s found in maize and teosinte. The reproductive barrier between maize and some weedy teosintes is controlled by the Tcb1-s locus. Multi-generation inheritance experiments on two independent Tcb1-s lineages show that the Tcb1-s barrier is unstable in some maize lines. Reciprocal crosses between Tcb1-s tester plants and three recombinants in the Tcb1-s mapping region demonstrate that the Tcb1-s haplotype contains separable male and female components. In vivo assays of the dynamics of pollen tube growth and pollen tube morphology during rejection of incompatible pollen in silks carrying the Tcb1-s, Ga1-s, or Ga2-s barriers showed that, in all three, pollen tube growth is slower than in compatible crosses at early stages and had ceased by 24 h after pollination. In all three crossing barrier systems, incompatible pollen tubes have clustered callose plugs in contrast to pollen tubes of compatible crosses. Incompatible pollen tubes growing in the Tcb1-s, Ga1-s, and Ga2-s silks have different morphologies: straight, curved, and kinked, respectively. The distinct morphologies suggest that these crossing barriers block incompatible pollen through different mechanisms. This study lays the foundation for cloning the Tcb1 genes and provides clues about the cellular mechanisms involved in pollen rejection in the Tcb1-s, Ga1-s, and Ga2-s crossing barriers.

Keywords

Unilateral cross-incompatibility Pollen tube growth Zea mays Maize Teosinte Reproductive isolation 

Notes

Acknowledgments

This research was supported by National Science Foundation Award number IOS-0951259 and by United States Department of Agriculture-National Research Initiative Competitive Grants Program Award number 35301-13314.

Supplementary material

497_2013_236_MOESM1_ESM.pptx (3.5 mb)
Supplementary material 1 (PPTX 3582 kb)
497_2013_236_MOESM2_ESM.pptx (2.7 mb)
Supplementary material 2 (PPTX 2798 kb)
497_2013_236_MOESM3_ESM.xlsx (40 kb)
Supplementary material 3 (XLSX 40 kb)

References

  1. Bedinger PA, Fowler JE (2009) The maize male gametophyte. In: Bennetzen JL, Hake SC (eds) Handbook of maize: its biology. Springer, New York, pp 57–77CrossRefGoogle Scholar
  2. Bloom JC, Holland JB (2011) Genomic localization of the maize cross-incompatibility gene, Gametophyte factor 1 (ga1). Maydica 56(4):379–387Google Scholar
  3. Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223(4):736–745. doi: 10.1007/s00425-005-0131-x PubMedCrossRefGoogle Scholar
  4. Bradshaw HD, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426(6963):176–178. doi: 10.1038/nature02106 PubMedCrossRefGoogle Scholar
  5. Chen KY, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318(5850):643–645. doi: 10.1126/science.1148428 PubMedCrossRefGoogle Scholar
  6. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572. doi: 10.1146/annurev.arplant.59.032607.092921 PubMedCrossRefGoogle Scholar
  7. Dresselhaus T, Franklin-Tong N (2013) Male–female cross-talk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant. doi: 10.1093/mp/sst061 PubMedGoogle Scholar
  8. Dresselhaus T, Lausser A, Marton ML (2011) Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses. Ann Bot 108(4):727–737. doi: 10.1093/aob/mcr017 PubMedCrossRefGoogle Scholar
  9. Edh K, Widen B, Ceplitis A (2009) The evolution and diversification of S-locus haplotypes in the Brassicaceae family. Genetics 181(3):977–984. doi: 10.1534/genetics.108.090837 PubMedCrossRefGoogle Scholar
  10. Evans MMS, Kermicle JL (2001) Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theor Appl Genet 103:259–265CrossRefGoogle Scholar
  11. Franklin-Tong VE (ed) (2008) Self-incompatibility in flowering plants. Springer, Berlin, HeidelbergGoogle Scholar
  12. Heslop-Harrison J (1982) Pollen-stigma interaction and cross-incompatibility in the grasses. Science 215(4538):1358–1364PubMedCrossRefGoogle Scholar
  13. House LR, Nelson OE (1958) Tracer study of pollen-tube growth in cross-sterile maize. J Heredity 49:18–21Google Scholar
  14. Johnson MA, Preuss D (2002) Plotting a course: multiple signals guide pollen tubes to their targets. Dev Cell 2(3):273–281PubMedCrossRefGoogle Scholar
  15. Kermicle JL (2006) A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives. Genetics 172(1):499–506PubMedCrossRefGoogle Scholar
  16. Kermicle JL, Allen JO (1990) Cross incompatibility between maize and teosinte. Maydica 35:399–408Google Scholar
  17. Kermicle JL, Evans MMS (2005) Pollen-pistil barriers to crossing in maize and teosinte result from incongruity rather than active rejection. Sex Plant Reprod 18:187–194CrossRefGoogle Scholar
  18. Kermicle JL, Evans MMS (2010) The Zea mays sexual compatibility gene ga2: naturally occurring alleles, their distribution, and role in reproductive isolation. J Hered 101(6):737–749PubMedCrossRefGoogle Scholar
  19. Kermicle JL, Taba S, Evans MMS (2006) The gametophyte-1 locus and reproductive isolation among Zea mays subspecies. Maydica 51(2):219–225Google Scholar
  20. Lausser A, Kliwer I, Srilunchang KO, Dresselhaus T (2010) Sporophytic control of pollen tube growth and guidance in maize. J Exp Bot 61(3):673–682PubMedCrossRefGoogle Scholar
  21. Li W, Chetelat RT (2010) A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 330(6012):1827–1830. doi: 10.1126/science.1197908 PubMedCrossRefGoogle Scholar
  22. Mangelsdorf PC, Jones DF (1926) The expression of Mendelian factors in the gametophyte of maize. Genetics 11(5):423–455PubMedGoogle Scholar
  23. McCormick S (2004) Control of male gametophyte development. Plant Cell 16:S142–S153PubMedCentralPubMedCrossRefGoogle Scholar
  24. Mogami N, Miyamoto M, Onozuka M, Nakamura N (2006) Comparison of callose plug structure between dicotyledon and monocotyledon pollen germinated in vitro. Grana 45(4):249–256CrossRefGoogle Scholar
  25. Mulcahy DL (1979) The rise of the angiosperms: a genecological factor. Science 206(4414):20–23. doi: 10.1126/science.206.4414.20 PubMedCrossRefGoogle Scholar
  26. Nelson OE (1994) The gametophyte factors of maize. In: Freeling M, Walbot V (eds) The maize handbook. Springer, New York, pp 496–503CrossRefGoogle Scholar
  27. Nishikawa S, Zinkl GM, Swanson RJ, Maruyama D, Preuss D (2005) Callose (beta-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biol 5:22PubMedCentralPubMedCrossRefGoogle Scholar
  28. Qin P, Ting D, Shieh A, McCormick S (2012) Callose plug deposition patterns vary in pollen tubes of Arabidopsis thaliana ecotypes and tomato species. BMC Plant Biol 12:178. doi: 10.1186/1471-2229-12-178 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Rieseberg LH, Willis JH (2007) Plant speciation. Science 317(5840):910–914. doi: 10.1126/science.1137729 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Snow AA, Spira TP (1991) Differential pollen-tube growth-rates and nonrandom fertilization in hibiscus moscheutos (Malvaceae). Am J Bot 78(10):1419–1426CrossRefGoogle Scholar
  31. Takeuchi H, Higashiyama T (2011) Attraction of tip-growing pollen tubes by the female gametophyte. Curr Opin Plant Biol 14(5):614–621. doi: 10.1016/j.pbi.2011.07.010 PubMedCrossRefGoogle Scholar
  32. Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491. doi: 10.1146/annurev.arplant.48.1.461 PubMedCrossRefGoogle Scholar
  33. Waelti MO, Muhlemann JK, Widmer A, Schiestl FP (2008) Floral odour and reproductive isolation in two species of Silene. J Evol Biol 21(1):111–121. doi: 10.1111/j.1420-9101.2007.01461.x PubMedGoogle Scholar
  34. Wang J, Tian L, Lee HS, Chen ZJ (2006) Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics 173(2):965–974. doi: 10.1534/genetics.106.056580 PubMedCrossRefGoogle Scholar
  35. Wilkes H (1967) Teosinte: the closest relative of maize. Bussey Institution of Harvard University, CambridgeGoogle Scholar
  36. Williams JH (2008) Novelties of the flowering plant pollen tube underlie diversification of a key life history stage. Proc Natl Acad Sci USA 105(32):11259–11263. doi: 10.1073/pnas.0800036105 PubMedCrossRefGoogle Scholar
  37. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15(7):363–369. doi: 10.1016/j.tplants.2010.04.005 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Yang B, Thorogood D, Armstead I, Barth S (2008) How far are we from unravelling self-incompatibility in grasses? New Phytol 178(4):740–753. doi: 10.1111/j.1469-8137.2008.02421.x PubMedCrossRefGoogle Scholar
  39. Zhang H, Liu X, Zhang Y, Jiang C, Cui D, Liu H, Li D, Wang L, Chen T, Ning L, Ma X, Chen H (2012) Genetic analysis and fine mapping of the Ga1-S gene region conferring cross-incompatibility in maize. Theor Appl Genet 124(3):459–465. doi: 10.1007/s00122-011-1720-7 PubMedCrossRefGoogle Scholar
  40. Zonia L, Munnik T (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14(6):318–327. doi: 10.1016/j.tplants.2009.03.008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yongxian Lu
    • 1
  • Jerry L. Kermicle
    • 2
  • Matthew M. S. Evans
    • 1
    Email author
  1. 1.Department of Plant BiologyCarnegie Institute for ScienceStanfordUSA
  2. 2.Laboratory of GeneticsUniversity of WisconsinMadisonUSA

Personalised recommendations