Plant Reproduction

, Volume 26, Issue 3, pp 209–229 | Cite as

Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome

  • Giulio Galla
  • Mirko Volpato
  • Timothy F. Sharbel
  • Gianni Barcaccia
Original Article

Abstract

MicroRNAs (miRNAs) have recently emerged as important regulators of gene expression in plants. Many miRNA families and their targets have been extensively studied in model species and major crops. We have characterized mature miRNAs along with their precursors and potential targets in Hypericum to generate a comprehensive list of conserved miRNA families and to investigate the regulatory role of selected miRNAs in biological processes that occur in the flower. St. John’s wort (Hypericum perforatum L., 2n = 4x = 32), a medicinal plant that produces pharmaceutically important metabolites with therapeutic activities, was chosen because it is regarded as an attractive model system for the study of apomixis. A computational in silico prediction of structure, in combination with an in vitro validation, allowed us to identify 7 pre-miRNAs, including miR156, miR166, miR390, miR394, miR396, and miR414. We demonstrated that H. perforatum flowers share highly conserved miRNAs and that these miRNAs potentially target dozens of genes with a wide range of molecular functions, including metabolism, response to stress, flower development, and plant reproduction. Our analysis paves the way toward identifying flower-specific miRNAs that may differentiate the sexual and apomictic reproductive pathways.

Keywords

miRNA Hypericumperforatum Reproductive organs Apomixis 

Supplementary material

497_2013_227_MOESM1_ESM.doc (23 kb)
Supplementary material 1 (DOC 23 kb)
497_2013_227_MOESM2_ESM.doc (42 kb)
Supplementary material 2 (DOC 41 kb)
497_2013_227_MOESM3_ESM.xlsx (26 kb)
Supplementary material 3 (XLSX 26 kb)

References

  1. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18(10):758–762PubMedCrossRefGoogle Scholar
  2. Albertini E, Barcaccia G, Mazzucato A, Sharbel TF, Falcinelli M (2010) Apomixis in the era of biotechnology. In: Pua EC, Davey MR (eds) Plant developmental biology—biotechnological perspectives. Springer, Heidelberg, pp 405–436Google Scholar
  3. Amiteye S, Corral J, Vogel H, Sharbel T (2011) Analysis of conserved microRNAs in floral tissues of sexual and apomictic Boechera species. BMC Genomics 12(1):500PubMedCrossRefGoogle Scholar
  4. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159PubMedCrossRefGoogle Scholar
  5. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17(6):1658–1673PubMedCrossRefGoogle Scholar
  6. Barakat A, Wall PK, DiLoreto S, dePamphilis CW, Carlson JE (2007) Conservation and divergence of microRNAs in Populus. BMC Genomics 8(1):481PubMedCrossRefGoogle Scholar
  7. Barcaccia G, Arzenton F, Sharbel TF, Varotto S, Parrini P, Lucchin M (2006) Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity 96(4):322–334PubMedCrossRefGoogle Scholar
  8. Barcaccia G, Baumlein H, Sharbel TF (2007) Apomixis in St. John’s wort: an overview and glimpse towards the future. In: Hörandle E, Grossniklaus U, Van Dijk P, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives, chap XIV. Koeltz Scientific Books, Vienna, pp 259–280Google Scholar
  9. Botton A, Galla G, Conesa A, Bachem C, Ramina A, Barcaccia G (2008) Large-scale gene ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology. BMC Genomics 9(1):347PubMedCrossRefGoogle Scholar
  10. Bowman JL, Axtell MJ (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13(7):343–349PubMedCrossRefGoogle Scholar
  11. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Sci Signal 320(5880):1185Google Scholar
  12. Buckley YM, Briese DT, Rees M (2003) Demography and management of the invasive plant species Hypericum perforatum. I. Using multi-level mixed-effects models for characterizing growth, survival and fecundity in a long-term data set. J Appl Ecol 40(3):481–493CrossRefGoogle Scholar
  13. Chambers C, Shuai B (2009) Profiling microRNA expression in Arabidopsis pollen using microRNA array and Real-Time PCR. BMC Plant Biol 9:87PubMedCrossRefGoogle Scholar
  14. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Sci Signal 303(5666):2022Google Scholar
  15. Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579(26):5923–5931PubMedCrossRefGoogle Scholar
  16. Chitwood DH, Nogueira FT, Howell MD, Montgomery TA, Carrington JC, Timmermans MC (2009) Pattern formation via small RNA mobility. Genes Dev 23(5):549–554PubMedCrossRefGoogle Scholar
  17. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676PubMedCrossRefGoogle Scholar
  18. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23(2):431–442PubMedCrossRefGoogle Scholar
  19. Debernardi JM, Rodriguez RE, Mecchia MA, Palatnik JF (2012) Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet 8(1):e1002419PubMedCrossRefGoogle Scholar
  20. Evan GI, Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835):342–348PubMedCrossRefGoogle Scholar
  21. Faller M, Guo F (2008) MicroRNA biogenesis: there’s more than one way to skin a cat. Biochim Biophys Acta (BBA) Gene Regul Mech 1779(11):663–667CrossRefGoogle Scholar
  22. Galla G, Barcaccia G, Ramina A, Collani S, Alagna F, Baldoni L, Cultrera NGM, Martinelli F, Sebastiani L, Tonutti P (2009) Computational annotation of genes differentially expressed along olive fruit development. BMC Plant Biol 9:128–144PubMedCrossRefGoogle Scholar
  23. Galla G, Barcaccia G, Schallau A, Puente Molins M, Baoumlein H, Sharbel TF (2011) The cytohistological basis of apospory in Hypericum perforatum L. Sex Plant Reprod 24(1):47–61PubMedCrossRefGoogle Scholar
  24. Galla G, Sharbel TF, Barcaccia G (2012) De novo sequencing and annotation of the Hypericum perforatum flower transcriptome. In: Proceedings of the 56th Italian Society of Agricultural Genetics, 17–20 Sept., Perugia, Italy, p 1.09Google Scholar
  25. Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49(4):683–693PubMedCrossRefGoogle Scholar
  26. Gao Z, Shi T, Luo X, Zhang Z, Zhuang W, Wang L (2012) High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genomics 13(1):371PubMedCrossRefGoogle Scholar
  27. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453–460PubMedCrossRefGoogle Scholar
  28. Jones-Rhoades MW (2012) Conservation and divergence in plant microRNAs. Plant Mol Biol 80(1):3–16PubMedCrossRefGoogle Scholar
  29. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefGoogle Scholar
  30. Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, Javelle M, Timmermans MC, Tucker MR, Laux T (2013) A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell 24:125–132PubMedCrossRefGoogle Scholar
  31. Koch MA, Scheriau C, Betzin A, Hohmann N, Sharbel TF (2013) Evolution of cryptic gene pools in Hypericum perforatum: the influence of reproductive system and gene flow. Ann Bot 111(6):1083–1094PubMedCrossRefGoogle Scholar
  32. Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54(1):547–574PubMedCrossRefGoogle Scholar
  33. Koltunow AM, Johnson SD, Lynch M, Yoshihara T, Costantino P (2001) Expression of rolB in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation, where apomixis initiates at higher frequency. Planta 214(2):196–205Google Scholar
  34. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRefGoogle Scholar
  35. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRefGoogle Scholar
  36. Liu D, Song Y, Chen Z, Yu D (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136(2):223–236PubMedCrossRefGoogle Scholar
  37. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14(7):1605–1619PubMedCrossRefGoogle Scholar
  38. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ (2005) Elucidation of the small RNA component of the transcriptome. Science 309(5740):1567–1569PubMedCrossRefGoogle Scholar
  39. Lynam-Lennon N, Maher SG, Reynolds JV (2009) The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc 84(1):55–71PubMedCrossRefGoogle Scholar
  40. Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36PubMedCrossRefGoogle Scholar
  41. Matzk F, Meister A, Brutovska R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26(3):275–282PubMedCrossRefGoogle Scholar
  42. Matzk F, Hammer K, Schubert I (2003) Coevolution of apomixis and genome size within the genus Hypericum. Sex Plant Reprod 16:51–58CrossRefGoogle Scholar
  43. Moxon S, Jing R, Szittya G, Schwach F, Pilcher RLR, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18(10):1602–1609PubMedCrossRefGoogle Scholar
  44. Nakagawa H, Ferrario S, Angenent GC, Kobayashi A, Takatsuji H (2004) The petunia ortholog of Arabidopsis SUPERMAN plays a distinct role in floral organ morphogenesis. Plant Cell 16(4):920–932PubMedCrossRefGoogle Scholar
  45. Nonomura KI, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N (2007) A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19(8):2583–2594PubMedCrossRefGoogle Scholar
  46. Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biol Evol 4(3):230–239PubMedCrossRefGoogle Scholar
  47. Nürk NM, Madriñán S, Carine MA, Chase MW, Blattner FR (2012) Molecular phylogenetics and morphological evolution of St. John’s wort (Hypericum; Hypericaceae). Mol Phylogenet Evol 66(1):1–16PubMedCrossRefGoogle Scholar
  48. Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464(7288):628–632PubMedCrossRefGoogle Scholar
  49. Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the Arabidopsis female gametophyte. Science 324(5935):1684–1689PubMedCrossRefGoogle Scholar
  50. Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JT, Weigel D (2007) Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319. Dev Cell 13(1):115–125PubMedCrossRefGoogle Scholar
  51. Pani A, Mahapatra RK, Behera N, Naik PK (2011) Computational identification of sweet Wormwood (Artemisia annua) microRNA and their mRNA targets. Genomics Proteomics Bioinf 9(6):200–210CrossRefGoogle Scholar
  52. Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62(6):960–976PubMedGoogle Scholar
  53. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Sci Signal 304(5671):734Google Scholar
  54. Polegri L, Calderini O, Arcioni S, Pupilli F (2010) Specific expression of apomixis-linked alleles revealed by comparative transcriptomic analysis of sexual and apomictic Paspalum simplex Morong flowers. J Exp Bot 61(6):1869–1883PubMedCrossRefGoogle Scholar
  55. Pupilli F, Barcaccia G (2012) Cloning plants by seeds: inheritance models and candidate genes to increase fundamental knowledge for engineering apomixis in sexual crops. J Biotechnol 159(4):291–311PubMedCrossRefGoogle Scholar
  56. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20(24):3407–3425PubMedCrossRefGoogle Scholar
  57. Robson NK (2002) Studies in the genus Hypericum L. (Guttiferae) 4(2). Section 9. Hypericum sensu lato (part 2): subsection 1. Hypericum series 1. Hypericum. Bull Nat Hist Mus Bot 32(2):61–123Google Scholar
  58. Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137(1):103–112PubMedCrossRefGoogle Scholar
  59. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19(18):2496–2497PubMedCrossRefGoogle Scholar
  60. Schallau A, Arzenton F, Johnston AJ, Hahnel U, Koszegi D, Blattner FR, Altschmied L, Haberer G, Barcaccia G, Baümlein H (2010) Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L. Plant J 62:772–784CrossRefGoogle Scholar
  61. Silvertown J (2008) The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Intl J Plant Sci 169(1):157–168CrossRefGoogle Scholar
  62. Singh M, Goel S, Meeley RB, Dantec C, Parrinello H, Michaud C, Leblanc O, Grimanelli D (2011) Production of viable gametes without meiosis in maize deficient for an ARGONAUTE protein. Plant Cell 23(2):443–458PubMedCrossRefGoogle Scholar
  63. Siomi H, Siomi MC (2010) Posttranscriptional regulation of miRNA biogenesis in animals. Mol Cell 38:323–332PubMedCrossRefGoogle Scholar
  64. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell Online 2(8):755–767Google Scholar
  65. Song L, Han MH, Lesicka J, Fedoroff N (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci USA 104(13):5437–5442PubMedCrossRefGoogle Scholar
  66. Song QX, Liu YF, Hu XY, Zhang WK, Ma B, Chen SY, Zhang JS (2011) Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol 11(1):5PubMedCrossRefGoogle Scholar
  67. Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80(1):17–36PubMedCrossRefGoogle Scholar
  68. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Sci Signal 16(8):2001Google Scholar
  69. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309PubMedCrossRefGoogle Scholar
  70. Tucker MR, Okada T, Hu Y, Scholefield A, Taylor JM, Koltunow AM (2012) Somatic small RNA pathways promote the mitotic events of megagametogenesis during female reproductive development in Arabidopsis. Development 139(8):1399–1404PubMedCrossRefGoogle Scholar
  71. Van Ex F, Jacob Y, Martienssen RA (2011) Multiple roles for small RNAs during plant reproduction. Curr Opin Plant Biol 14(5):588–593PubMedCrossRefGoogle Scholar
  72. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687PubMedCrossRefGoogle Scholar
  73. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133(21):4211–4218PubMedCrossRefGoogle Scholar
  74. Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Phys 142(1):280–293CrossRefGoogle Scholar
  75. Xie F, Frazier TP, Zhang B (2010) Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 232(2):417–434PubMedCrossRefGoogle Scholar
  76. Yamada-Akiyama H, Akiyama Y, Ebina M, Xu Q, Tsuruta S, Yazaki J, Kishimoto N, Kikuchi S, Takahara M, Takamizo T, Sugita S, Nakagawa H (2009) Analysis of expressed sequence tags in apomictic guineagrass (Panicum maximum). J Plant Physiol 166(7):750–761PubMedCrossRefGoogle Scholar
  77. Yu HP, Song CN, Jia QD, Wang C, Li F, Nicholas KK, Zhang XY, Fang JG (2011) Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Physiol Plant 141(1):56–70PubMedCrossRefGoogle Scholar
  78. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006a) Conservation and divergence of plant microRNA genes. Plant J 46(2):243–259PubMedCrossRefGoogle Scholar
  79. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006b) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63(2):246–254PubMedCrossRefGoogle Scholar
  80. Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229(1):161–182PubMedCrossRefGoogle Scholar
  81. Zhang L, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5(11):e1000716PubMedCrossRefGoogle Scholar
  82. Zhang Z et al (2010) PMRD: plant microRNA database. Nucleic Acids Res 38(Suppl 1):D806–D813PubMedCrossRefGoogle Scholar
  83. Zhao CZ, Xia H, Frazier T, Yao YY, Bi YP, Li AQ, Li MJ, Li CS, Zhang BH, Wang XJ (2010) Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 10(1):3PubMedCrossRefGoogle Scholar
  84. Zhu QH, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18(9):1456–1465PubMedCrossRefGoogle Scholar
  85. Zhu H, Xia R, Zhao B, An YQ, Dardick CD, Callahan AM, Liu Z (2012) Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol 12(1):149PubMedCrossRefGoogle Scholar
  86. Zouhar K (2004) Hypericum perforatum. In: Fire effects information system [online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). http://www.fs.fed.us/database/feis/
  87. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giulio Galla
    • 1
  • Mirko Volpato
    • 1
  • Timothy F. Sharbel
    • 2
  • Gianni Barcaccia
    • 1
  1. 1.Laboratory of Genetics and Genomics, DAFNAEUniversity of PadovaLegnaroItaly
  2. 2.Apomixis Research GroupLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations