Plant Reproduction

, Volume 26, Issue 3, pp 245–254 | Cite as

PsPMEP, a pollen-specific pectin methylesterase of pea (Pisum sativum L.)

  • María Dolores Gómez
  • Begoña Renau-Morata
  • Edelín Roque
  • Julio Polaina
  • José Pío Beltrán
  • Luis A. Cañas
Original Article

Abstract

Pectin methylesterases (PMEs) are a family of enzymes involved in plant reproductive processes such as pollen development and pollen tube growth. We have isolated and characterized PsPMEP, a pea (Pisum sativum L.) pollen-specific gene that encodes a protein with homology to PMEs. Sequence analysis showed that PsPMEP belongs to group 2 PMEs, which are characterized by the presence of a processable amino-terminal PME inhibitor domain followed by the catalytic PME domain. Moreover, PsPMEP contains several motifs highly conserved among PMEs with the essential amino acid residues involved in enzyme substrate binding and catalysis. Northern blot and in situ hybridization analyses showed that PsPMEP is expressed in pollen grains from 4 days before anthesis till anther dehiscence and in pollinated carpels. In the PsPMEP promoter region, we have identified several conserved cis-regulatory elements that have been associated with gene pollen-specific expression. Expression analysis of PsPMEP promoter fused to the uidA reporter gene in Arabidopsis thaliana plants showed a similar expression pattern when compared with pea, indicating that this promoter is also functional in a non-leguminous plant. GUS expression was detected in mature pollen grains, during pollen germination, during pollen tube elongation along the transmitting tract, and when the pollen tube reaches the embryo sac in the ovule.

Keywords

Pectin methylesterase Pea (Pisum sativum L.) Pollen-specific PMEI Gene promoter Pollen tube growth Arabidopsis 

Supplementary material

497_2013_220_MOESM1_ESM.tif (9.9 mb)
Figure S1. Neighbor-Joining Tree of selected pollen-specific PMEs. The numbers next to the nodes refer to bootstrap values from 1000 pseudo-replicates. Accession numbers for the PME proteins used in this N-J tree are: O80722 (AT2G47040), Q9FJ21 (AT5G49180), AEE35001(AT1G69940) and ABI97858.1 (AT5G55590.1) Arabidopsis thaliana; P41510 Brassica napus; Q42608 Brassica rapa; Q43043 Petunia integrifolia subsp. inflata; AAX13972 Nicotiana tabacum; Q9MBB6 Salix gilgiana; Q24596 Zea mays; Q9SC89, Q9SC90 Medicago truncatula; Q42920 Medicago sativa and KC964536 (PsPMEP) Pisum sativum. We inferred the phylogeny based on the alignment of mature enzyme sequences of 14 representative PMEs from pollen, which are clustered into four clades (A to D). Branch lengths are proportional to sequence divergence
497_2013_220_MOESM2_ESM.docx (12 kb)
Table S1. Primers used to sequence the PsPMEP genomic clone
497_2013_220_MOESM3_ESM.doc (32 kb)
Table S2. Putative pollen-specific motifs identified in the PsPMEP promoter region (-1 to -2133)

References

  1. Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869PubMedCrossRefGoogle Scholar
  2. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci 316:1194–1199Google Scholar
  3. Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226PubMedCrossRefGoogle Scholar
  4. Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 233:736–745CrossRefGoogle Scholar
  5. Camardella L (2000) Kiwi protein inhibitor of pectin methylesterase–amino-acid sequence and structural importance of two disulfide bridges. Eur J Biochem 267:4561–4565PubMedCrossRefGoogle Scholar
  6. Carpenter JL, Ploense SE, Snustad DP, Silflow CD (1992) Preferential expression of an alpha-tubulin gene of Arabidopsis in pollen. Plant Cell 4:557–571PubMedGoogle Scholar
  7. Combet C, Blanchet C, Geourjon C, Deléage G (2000) NPS@: network protein sequence analysis. Trend Biochem Sci 25:147–150PubMedCrossRefGoogle Scholar
  8. De Almeida Engler J, Van Montagu M, Engler G (1998) Whole-mount in situ hybridization in plants. Methods Mol Biol (Clifton, NJ) 82:373–384Google Scholar
  9. De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G (2011) Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. Plant J 65(2):295–308PubMedCrossRefGoogle Scholar
  10. Francis KE, Lam SY, Copenhaver GP (2006) Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol 142:1004–1013PubMedCrossRefGoogle Scholar
  11. Futamura N, Mori H, Kouchi H, Shinohara K (2000) Male flower-specific expression of genes for polygalacturonase, pectin methylesterase and β-1,3-glucanase in a dioecious willow (Salix gilgliana Seemen). Plant Cell Physiol 41:16–26PubMedCrossRefGoogle Scholar
  12. García-Sogo B, Pineda B, Castelblanque L, Antón T, Medina M, Roque E, Torresi C, Beltrán JP, Moreno V, Cañas LA (2010) Efficient transformation of Kalanchoe blossfeldiana and production of male sterile plants by engineered anther ablation. Plant Cell Rep 29:61–77PubMedCrossRefGoogle Scholar
  13. García-Sogo B, Pineda B, Roque E, Antón T, Atarés A, Borja M, Beltrán JP, Moreno V, Cañas LA (2012) Production of engineered long-life and male sterile Pelargonium plants. BMC Plant Biol 12:156–162PubMedCrossRefGoogle Scholar
  14. Gómez MD, Beltrán JP, Cañas LA (2004) The pea END1 promoter drives anther-specific gene expression in different plant species. Planta 219:967–981PubMedCrossRefGoogle Scholar
  15. Gummadi SN, Manoj N, Kumar DS (2007) Structure and biochemical properties of pectinases. In: Polaina J, MacCabe AP (eds) Industrial enzymes: structure, function and applications. Springer, Berlin, pp 99–115. ISBN 9781402053764CrossRefGoogle Scholar
  16. Gurgu L, Lafraya A, Polaina J, Marín-Navarro J (2011) Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL1) from Saccharomycopsis fibuligera. Bioresour Technol 102:5229–5236PubMedCrossRefGoogle Scholar
  17. Hamilton DA, Schwarz YH, Mascarenhas JP (1998) A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Mol Biol 38:663–669PubMedCrossRefGoogle Scholar
  18. Hewitt EJ (1966) Hoagland No. 1 solution with oligoelements. In: Sand and water culture methods used in the study of plant nutrition, 2nd edn, Technical Communication No. 22. Commonwealth Agricultural Bureaux, Farnham Royal, EnglandGoogle Scholar
  19. Hothorn M, Wolf S, Aloy P, Greiner S, Scheffzek K (2004) Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. Plant Cell 16:3437–3447PubMedCrossRefGoogle Scholar
  20. Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, Ye D (2005) VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell 17:584–596PubMedCrossRefGoogle Scholar
  21. Johansson K, El-Ahmad M, Friemann R, Jörnvall H, Markovic O, Eklund H (2002) Crystal structure of plant pectin methylesterase. FEBS Lett 514:243–249PubMedCrossRefGoogle Scholar
  22. Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595PubMedCrossRefGoogle Scholar
  23. Kononowicz AK, Nelson DE, Singh NK, Hasegawa PM, Bressan RA (1992) Regulation of the osmotin gene promoter. Plant Cell 4:513–524PubMedGoogle Scholar
  24. Li YQ, Mareck A, Faleric C, Moscatelli A, Liu Q, Cresti M (2002) Detection and localization of pectin methylesterase isoforms in pollen tubes of Nicotiana tabacum L. Planta 214:734–740PubMedCrossRefGoogle Scholar
  25. Marín-Navarro J, Gurgu L, Alamar S, Polaina J (2011) Structural and functional analysis of hybrid enzymes generated by domain shuffling between Saccharomyces cerevisiae (var. diastaticus) Sta1 glucoamylase and Saccharomycopsis fibuligera Bgl1 β-glucosidase. Appl Microbiol Biotechnol 89:121–130PubMedCrossRefGoogle Scholar
  26. Markovic O, Janecek S (2004) Pectin methylesterases: sequence-structural features and phylogenetic relationships. Carbohydr Res 339:2281–2295PubMedCrossRefGoogle Scholar
  27. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419PubMedCrossRefGoogle Scholar
  28. Mitsuda N, Takeyasu K, Sato MH (2001) Pollen-specific regulation of vacuolar H+-PPase expression by multiple cis-acting elements. Plant Mol Biol 46:185–192PubMedCrossRefGoogle Scholar
  29. Okada T, Zhang Z, Russell RD, Toriyama K (1999) Localization of Bra r 1, a Ca2+-binding protein of Brassica rapa, in anthers and pollen tubes. Plant Cell Physiol 40:1243–1252PubMedCrossRefGoogle Scholar
  30. Palin R, Geitmann A (2012) The role of pectin in plant morphogenesis. Bio Syst 109:397–402Google Scholar
  31. Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277PubMedCrossRefGoogle Scholar
  32. Pistón F, García C, de la Viña G, Beltrán JP, Cañas LA, Barro F (2008) The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspores stage and during pollen tube development. Mol Breed 21:401–405CrossRefGoogle Scholar
  33. Qiu X, Erickson L (1995) A pollen-specific cDNA (P65, accession no. U28148) encoding a putative pectin esterase in alfalfa (PGR95-094). Plant Physiol 109:1127Google Scholar
  34. Rodríguez-Llorente ID, Pérez-Hormaeche J, El Mounadi K, Dary M, Caviedes MA, Cosson V, Kondorosi A, Ratet P, Palomares AJ (2004) From pollen tubes to infection threads: recruitment of Medicago floral pectic genes for symbiosis. Plant J 39:587–598PubMedCrossRefGoogle Scholar
  35. Roque E, Gómez MD, Ellull P, Wallbraun M, Madueño F, Beltrán JP, Cañas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325PubMedCrossRefGoogle Scholar
  36. Sambrook J, Fritsch EF, Maniatis T (1989) Hybridization of radiolabeled probes to immobilized nucleic acids. In: Ford N, Nolan C, Ferguson M (eds) Molecular cloning: a laboratory manual, 2nd edn, chap 9. Cold Spring Harbor Laboratory Press, New York, USA, pp 47–48Google Scholar
  37. Scognamiglio MA, Ciardiello MA, Tamburrini M, Carratore V, Rausch T, Camardella L (2003) The plant invertase inhibitor shares structural properties and disulfide bridges arrangement with the pectin methylesterase inhibitor. J Protein Chem 22:363–369PubMedCrossRefGoogle Scholar
  38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  39. Tang W, Perry SE (2003) Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem 278:28154–28159PubMedCrossRefGoogle Scholar
  40. Tian G-W, Chen M-H, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91PubMedCrossRefGoogle Scholar
  41. Twell D, Klein TM, Fromm ME, McCormick S (1989) Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol 91:1270–1274PubMedCrossRefGoogle Scholar
  42. Twell D, Yamaguchi J, McCormick S (1990) Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109:705–713PubMedGoogle Scholar
  43. Twell D, Yamaguchi J, Wing RA, Ushiba J, McCormick S (1991) Promoter analysis of genes that are co-ordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev 5:496–507PubMedCrossRefGoogle Scholar
  44. Wakeley PR, Rogers HJ, Rozychk M, Greenland AJ, Hussey PJ (1998) A maize pectin methylesterase-gene, ZmC5, specifically expressed in pollen. Plant Mol Biol 37:187–192PubMedCrossRefGoogle Scholar
  45. Wen F, Zhu Y, Hawes MC (1999) Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11:1129–1140PubMedGoogle Scholar
  46. Weterings K, Schrauwen J, Wullems G, Twell D (1995) Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J 8:55–63PubMedCrossRefGoogle Scholar
  47. Wolf S, Rausch T, Greiner S (2009) The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus. Plant J 58:361–375 PubMedCrossRefGoogle Scholar
  48. Woriedh M, Wolf S, Márton ML, Hinze A, Gahrtz M, Becker D, Dresselhaus T (2013) External application of gametophyte-specific ZmPMEI1 induces pollen tube burst in maize. Plant Reprod. doi:10.1007/s00497-013-0221-z
  49. Zhu C, Perry SE (2005) Control of expression and autoregulation of AGL15, a member of the MADS-box family. Plant J 41:583–594PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • María Dolores Gómez
    • 1
  • Begoña Renau-Morata
    • 1
  • Edelín Roque
    • 1
  • Julio Polaina
    • 2
  • José Pío Beltrán
    • 1
  • Luis A. Cañas
    • 1
  1. 1.Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV)ValenciaSpain
  2. 2.Instituto de Agroquímica y Tecnología de Alimentos (CSIC)PaternaSpain

Personalised recommendations