Skip to main content
Log in

Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

Expression datasets relating to the Arabidopsis female gametophyte have enabled the creation of a tool set which allows simultaneous visual tracking of each specific cell type (egg, synergids, central cell, and antipodals). This cell-specific, fluorescent labeling tool-set functions from gametophyte cellularization through fertilization and early embryo development. Using this system, cell fates were tracked within Arabidopsis ovules following molecular manipulations, such as the ablation of the egg and/or synergids. Upon egg cell ablation, it was observed that a synergid can switch its developmental fate to become egg/embryo-like upon loss of the native egg. Also, manipulated was the fate of the somatic ovular cells, which can become egg- and embryo-like, reminiscent of adventitious embryony. These advances represent initial steps toward engineering synthetic apomixis resulting in seed derived wholly from the maternal plant. The end goal of applied apomixis research, fixing important agronomic traits such as hybrid vigor, would be a key benefit to agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berger F, Twell D (2011) Germline specification and function in plants. Annu Rev Plant Biol 62:461–484

    Article  PubMed  CAS  Google Scholar 

  • Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double fertilization-caught in the act. Trends Plant Sci 13:437–443

    Article  PubMed  CAS  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C-M, van Lammeren AAM, Miki BLA, Custers JBM, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Chamberlin MA, Horner HT, Palmer RG (1993) Nutrition of ovule, embryo sac, and young embryo in soybean: an anatomical and autoradiographic study. Can J Bot 71:1153–1168

    Article  Google Scholar 

  • Cheng C-Y, Mathews DE, Eric Schaller G, Kieber JJ (2013) Cytokinin-dependent specification of the functional megaspore in the Arabidopsis female gametophyte. Plant J, pp 929–940

  • Crismani W, Girard C, Mercier R (2013) Tinkering with meiosis. J Exp Bot 64:55–65

    Article  PubMed  CAS  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  PubMed  CAS  Google Scholar 

  • Emmanuel E, Yehuda E, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA (2006) The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep 7:100–105

    Article  PubMed  CAS  Google Scholar 

  • Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jurgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5:e47

    Article  PubMed  Google Scholar 

  • Hartley RW (1988) Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol 202:913–915

    Article  PubMed  CAS  Google Scholar 

  • Hartley RW (1989) Barnase and barstar: two small proteins to fold and fit together. Trends Biochem Sci 14:450

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    Article  PubMed  CAS  Google Scholar 

  • Huang B-Q, Russell SD (1992) Female germ unit: organization, isolation, and function. In: Scott DR, Christian D (eds) International review of cytology. Academic Press, pp. 233–293

  • Ingouff M, Haseloff J, Berger F (2005) Polycomb group genes control developmental timing of endosperm. Plant J 42:663–674

    Article  PubMed  CAS  Google Scholar 

  • Ingram G (2010) Family life at close quarters: communication and constraint in angiosperm seed development. Protoplasma 247:195–214

    Article  PubMed  Google Scholar 

  • Johnston A, Meier P, Gheyselinck J, Wuest S, Federer M, Schlagenhauf E, Becker J, Grossniklaus U (2007) Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte. Genome Biol 8:R204

    Article  PubMed  Google Scholar 

  • Koltunow AM, Johnson SD, Rodrigues JC, Okada T, Hu Y, Tsuchiya T, Wilson S, Fletcher P, Ito K, Suzuki G, Mukai Y, Fehrer J, Bicknell RA (2011) Sexual reproduction is the default mode in apomictic Hieracium subgenus Pilosella, in which two dominant loci function to enable apomixis. Plant J 66:890–902

    Article  PubMed  CAS  Google Scholar 

  • Koszegi D, Johnston AJ, Rutten T, Czihal A, Altschmied L, Kumlehn J, Wust SE, Kirioukhova O, Gheyselinck J, Grossniklaus U, Baumlein H (2011) Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J 67:280–291

    Article  PubMed  Google Scholar 

  • Krohn NG, Lausser A, Juranic M, Dresselhaus T (2012) Egg cell signaling by the secreted peptide ZmEAL1 controls antipodal cell fate. Dev Cell 23:219–225

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Wurschum T, Breuninger H (2004) Genetic regulation of embryonic pattern formation. Plant Cell 16(Suppl):S190–S202

    PubMed  CAS  Google Scholar 

  • Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868

    Article  PubMed  CAS  Google Scholar 

  • Li D, Lin M, Wang Y, Tian H (2009) Synergid: a key link in fertilization of angiosperms. Biol Plant 53:401

    Article  Google Scholar 

  • Marton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307:573–576

    Article  PubMed  CAS  Google Scholar 

  • Matias-Hernandez L, Battaglia R, Galbiati F, Rubes M, Eichenberger C, Grossniklaus U, Kater MM, Colombo L (2010) VERDANDI is a direct target of the MADS domain ovule identity complex and affects embryo sac differentiation in Arabidopsis. Plant Cell 22:1702–1715

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Takanashi H, Mogi M, Takahashi H, Kikuchi S, Yano K, Okamoto T, Fujita M, Kurata N, Tsutsumi N (2011) Distinct gene expression profiles in egg and synergid cells of rice as revealed by cell type-specific microarrays. Plant Physiol 155:881–891

    Article  PubMed  CAS  Google Scholar 

  • Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M, Demesa-Arevalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    Article  PubMed  CAS  Google Scholar 

  • Ouakfaoui SE, Schnell J, Abdeen A, Colville A, Labbé H, Han S, Baum B, Laberge S, Miki B (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74:313–326

    Article  PubMed  Google Scholar 

  • Pagnussat GC, Yu H-J, Sundaresan V (2007) Cell-fate switch of synergid to egg cell in arabidopsis eostre mutant embryo sacs arises from misexpression of the bel1-like homeodomain gene blh1. Plant Cell 19:3578–3592

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Alandete-Saez M, Bowman JL, Sundaresan V (2009) Auxin-dependent patterning and gamete specification in the arabidopsis female gametophyte. Science 324:1684–1689

    Article  PubMed  CAS  Google Scholar 

  • Ranganath RM (2011) Developmental switches that hold the key to a revolution in crop biotechnology. Nat Rev Genet 12:224

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-León N, Arteaga-Vázquez M, Alvarez-Mejía C, Mendiola-Soto J, Durán-Figueroa N, Rodríguez-Leal D, Rodríguez-Arévalo I, García-Campayo V, García-Aguilar M, Olmedo-Monfil V, Arteaga-Sánchez M, Martínez de la Vega O, Nobuta K, Vemaraju K, Meyers BC, Vielle-Calzada J-P (2012) Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing. J Exp Botany 63:3829–3842

  • Schneider I (2003) Novel high-throughput screening technologies: fluorescence. Bioluminescence and flow cytometry aid drug discovery, Genetic Engineering News 23

    Google Scholar 

  • Sprunck S, Gross-Hardt R (2011) Nuclear behavior, cell polarity, and cell specification in the female gametophyte. Sex Plant Reprod 24:123–136

    Article  PubMed  Google Scholar 

  • Sprunck S, Rademacher S, Vogler F, Gheyselinck J, Grossniklaus U, Dresselhaus T (2012) Egg cell-secreted EC1 triggers sperm cell activation during double fertilization. Science 338:1093–1097

    Article  PubMed  CAS  Google Scholar 

  • Staudt T, Lang MC, Medda R, Engelhardt J, Hell SW (2007) 2,2′-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70:1–9

    Article  PubMed  CAS  Google Scholar 

  • Steffen JG, Kang IH, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51:281–292

    Article  PubMed  CAS  Google Scholar 

  • Sundaresan V, Alandete-Saez M (2010) Pattern formation in miniature: the female gametophyte of flowering plants. Development 137:179–189

    Article  PubMed  CAS  Google Scholar 

  • Vielle-Calzada JP, Baskar R, Grossniklaus U (2000) Delayed activation of the paternal genome during seed development. Nature 404:91–94

    Article  PubMed  CAS  Google Scholar 

  • Völz R, von Lyncker L, Baumann N, Dresselhaus T, Sprunck S, Groß-Hardt R (2012) LACHESIS-dependent egg-cell signaling regulates the development of female gametophytic cells. Development 139:498–502

    Article  PubMed  Google Scholar 

  • Wang X, Niu QW, Teng C, Li C, Mu J, Chua NH, Zuo J (2009) Overexpression of PGA37/MYB118 and MYB115 promotes vegetative-to-embryonic transition in Arabidopsis. Cell Res 19:224–235

    Article  PubMed  CAS  Google Scholar 

  • Wuest SE, Vijverberg K, Schmidt A, Weiss M, Gheyselinck J, Lohr M, Wellmer F, Rahnenführer J, von Mering C, Grossniklaus U (2010) Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes. Curr Biol 20:506–512

    Article  PubMed  CAS  Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16:S133–S141

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, Grossniklaus U (2005) An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. Plant Physiol 139:1421–1432

    Article  PubMed  CAS  Google Scholar 

  • Yu H-J, Hogan P, Sundaresan V (2005) Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol 139:1853–1869

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ueli Grossniklaus and Tim Bourett for discussions and advice, and Tim Fox and Olga Danilevskaya for critical evaluation of the manuscript. We thank Rachel Huegel, David Oneal, and Susan Wagner for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shai J. Lawit.

Additional information

Communicated by Anna Maria G Koltunow.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 821 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawit, S.J., Chamberlin, M.A., Agee, A. et al. Transgenic manipulation of plant embryo sacs tracked through cell-type-specific fluorescent markers: cell labeling, cell ablation, and adventitious embryos. Plant Reprod 26, 125–137 (2013). https://doi.org/10.1007/s00497-013-0215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-013-0215-x

Keywords

Navigation