Skip to main content
Log in

Polyploidy and polyembryony in Anemopaegma (Bignonieae, Bignoniaceae)

  • Original Article
  • Published:
Plant Reproduction Aims and scope Submit manuscript

Abstract

Polyploidy is a key process in plant evolution, with the asexual formation of embryos representing a way through which polyploids can escape sterility. The association between polyploidy and polyembryony is known to occur in Bignoniaceae. In this study, we investigate polyembryony in four polyploid species of Anemopaegma: A. acutifolium, A. arvense, A. glaucum and A. scabriusculum as well as in one diploid species, A. album. Polyembryony was observed only in polyploid species. We used seed dissection and germination tests to compare the number of polyembryonic seeds. We tested how the pollen source influences the number of polyembryonic seeds and the number of embryos per seed and tested the correlation between the number of viable seeds per fruit and mean number of embryos per seed. The number of polyembryonic seeds observed by seed dissection was higher than the number of polyembryonic seeds determined by the germination test, with the number of embryos produced per seed being higher than the number of seedlings. The dissection of seeds of A. glaucum indicated that a higher number of polyembryonic seeds and a higher number of embryos were present in seeds from cross-pollination than in seeds from self-pollination. On the other hand, germination tests indicated that a higher number of polyembryonic seeds were present in fruits from self-pollination than from cross-pollination. The mean number of embryos per seed was not influenced by the number of viable seeds per fruit in fruits from open pollination. These results indicate a positive relationship between polyembryony and polyploidy in Anemopaegma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  PubMed  CAS  Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Baker HG (1960) Apomixis and polyembryony in Paquira oleaginea (Bombacaceae). Am J Bot 47:296–302

    Article  Google Scholar 

  • Barringer BC (2007) Polyploidy and self-fertilization in flowering plants. Am J Bot 94:1527–1533

    Article  PubMed  Google Scholar 

  • Bianchi MB, Harris SA, Gibbs PE, Prado DE (2005) A study of the mating system in Dolichandra cynanchoides (Bignoniaceae): an Argentinian Chaco woodlands liane with a late-acting self-incompatibility. Plant Syst Evol 251:173–181. doi:10.1007/s00606-004-0227-y

    Article  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:S228–S245. doi:10.1105/tpc.017921

    Article  PubMed  CAS  Google Scholar 

  • Bittencourt Jr NS (2003) Auto-incompatibilidade de ação tardia e outros sistemas reprodutivos em Bignoniaceae. PhD Thesis, Universidade Estadual de Campinas

  • Bittencourt NS Jr, Moraes CIG (2010) Self-fertility and polyembryony in South American yellow trumpet trees (Handroanthus chrysotrichus and H. ochraceus, Bignoniaceae): a histological study of postpollination events. Plant Syst Evol 288:59–76. doi:10.1007/s00606-010-0313-2

    Article  Google Scholar 

  • Bittencourt NS Jr, Semir J (2004) Pollination biology and breeding system of Zeyheria montana (Bignoniaceae). Plant Syst Evol 247:241–254. doi:10.1007/s00606-004-0142-2

    Article  Google Scholar 

  • Bittencourt NS Jr, Semir J (2005) Late-acting self-incompatibility and other breeding systems in Tabebuia (Bignoniaceae). Int J Plant Sci 166:493–506. doi:1058-5893/2005/16603-0011

    Article  Google Scholar 

  • Bittencourt NS Jr, Semir J (2006) Floral biology and late-acting self-incompatibility in Jacaranda racemosa (Bignoniaceae). Aust J Bot 54:315–324. doi:10.1071/BT042210067-1924/06/030315

    Article  Google Scholar 

  • Bittencourt NS Jr, Gibbs PE, Semir J (2003) Histological study of post-pollination events in Spathodea campanulata Beauv. (Bignoniaceae), a species with late-acting self-incompatibility. Ann Bot 91:827–834. doi:10.1093/aob/mcg088

    Article  PubMed  Google Scholar 

  • Bowden WM (1945) A list of chromosome numbers in higher plants. I. Acanthaceae to Myrtaceae. Am J Bot 32:81–92

    Article  Google Scholar 

  • Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  PubMed  CAS  Google Scholar 

  • Calzada JPV, Crane CF, Stelly DM (1996) Apomixis—the asexual revolution. Science 274:1322–1323

    Article  CAS  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory and polyembryony. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Correia MCR, Pinheiro MCB, Lima HA (2005) Produção de frutos e germinação de sementes de Anemopaegma chamberlaynii Bur. & K. Schum. (Bignoniaceae)—Um registro de poliembrionia. Sitientibus Ser Ci Bio 5:68–71

    Google Scholar 

  • Costa ME, Sampaio DS, Paoli AAS, Leite SCAL (2004) Poliembrionia e aspectos da embriogênese em Tabebuia ochracea (Chamisso) Standley (Bignoniaceae). Rev Bras Bot 27:395–406

    Article  Google Scholar 

  • Darlington CD, Wylie AP (1961) Chromosome atlas of flowering plants, 2nd edition, 2nd impression. George Allen & Unwin LTD. London

  • de Wet JMJ (1971) Polyploidy and evolution in plants. Taxon 20:29–35

    Article  Google Scholar 

  • Firetti-Leggieri F (2009) Biossistemática das espécies do complexo Anemopaegma arvense (Vell.) Stellf. ex de Souza (Bignoniaceae, Bignonieae): aspectos anatômicos, citológicos, moleculares, morfológicos e reprodutivos. PhD Thesis, Universidade Estadual de Campinas

  • Firetti-Leggieri F, Costa IR, Forni-Martins ER, Lohmann LG, Semir J (2011) Chromosome studies in Bignonieae (Bignoniaceae): the first records of polyploidy in Anemopaegma Mart. ex Meisn. Cytologia 76:185–191

    Article  Google Scholar 

  • Gandolphi G, Bittencourt NS Jr (2010) Sistema reprodutivo do ipê-branco—Tabebuia roseo-alba (Ridley) Sandwith (Bignoniaceae). Acta Bot Bras 24:840–851

    Article  Google Scholar 

  • Ganeshaiah KN, Shaanker RU, Joshi NV (1991) Evolution of polyembryony: consequences to the fitness of mother and offspring. J Gen 70:103–127

    Article  Google Scholar 

  • Gibbs PE, Bianchi M (1993) Postpollination events in species of Chorisia (Bombacaceae) and Tabebuia (Bignoniaceae) with late-acting self-incompatibility. Bot Acta 106:64–71

    Google Scholar 

  • Gibbs PE, Bianchi M (1999) Does late-acting self-incompatibility (LSI) show family clustering? Two more species of Bignoniaceae with LSI: Dolichandra cynanchoides and Tabebuia nodosa. Ann Bot 84:449–457

    Article  Google Scholar 

  • Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Hörandl E (2010) The evolution of self-fertility in apomictic plants. Sex Plant Reprod 23:73–86. doi:10.1007/s00497-009-0122-3

    Article  PubMed  Google Scholar 

  • Jullier S (1989) Cromosomas mitóticos de Doychandra cynanchoides y Macfadyena unguis-cati (Bignoniaceae). Kurtziana 20:215–217

    Google Scholar 

  • Kokou Y, Akyo M, Shoji N, Koho KT (2000) Skin external use agent. JP-Patent Number 2000143482. May 23

  • Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437

    PubMed  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Ann Rev Plant Biol 54:547–574. doi:10.1146/annurev.arplant.54.110901.160842

    Article  CAS  Google Scholar 

  • Lakshmanan KK, Ambegaokar KK (1984) Polyembryony. In: Johri BM (ed) Embryology in angiosperms. Spring, Berlin, pp 445–474

    Chapter  Google Scholar 

  • Levin DA (2002) Polyploidy: incidence, types and modes of establishment. In: Levin DA (ed) The role of chromosomal change in plant evolution. Oxford University Press, Inc., Oxford, pp 98–133

  • Lee I, Lee YH, Leonard J (2002) Ursolic acid induced changes in tumor growth O2 consumption and tumor interstitial fluid pressure. Anticancer Res 21:2827–2834

    Google Scholar 

  • Lohmann LG, Taylor CM (2013) A new generic classification of Bignonieae (Bignoniaceae) based on molecular phylogenetic data and morphological synapomorphies. Ann Mo Bot Gard

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423

    Article  PubMed  CAS  Google Scholar 

  • Mendes-Rodrigues C, Carmo-Oliveira R, Talavera S, Arista M, Ortiz PL, Oliveira PE (2005) Polyembryony and Apomixis in Eriotheca pubescens (Malvaceae-Bombacoideae). Plant Biol 7:533–540

    Article  PubMed  CAS  Google Scholar 

  • Mendes-Rodrigues C, Ranal MA, Oliveira PE (2011) Does polyembryony reduce seed germination and seedling development in Eriotheca pubescens (Malvaceae-Bombacoideae)? Am J Bot 98:1613–1622. doi:10.3732/ajb.1100022

    Article  PubMed  Google Scholar 

  • Mondragon JC (2001) Verification of the apomictic origin of cactus pear (Opuntia spp. Cactaceae) seedling of open pollinated and crosses from Central Mexico. J Prof Assoc Cactus 4:49–56

    Google Scholar 

  • Naumova TN (1993) Apomixis in angiosperms: nucellar and integumentary embryony. CRC Press, Boca Raton

    Google Scholar 

  • Naumova TN (1997) Apomixis in tropical fodder crops: cytological and functional aspects. Euphytica 96:93–99

    Article  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology in angiosperms. Springer, Berlin, pp 475–518

    Chapter  Google Scholar 

  • Oliveira PE, Gibbs PE, Barbosa AA, Talavera S (1992) Contrasting breeding systems in two Eriotheca (Bombacaceae) species of Brazilian cerrados. Plant Syst Evol 179:207–219

    Article  Google Scholar 

  • Ortolani FA (2007) Morfo-anatomia, citogenética e palinologia em espécies de ipê (Bignoniaceae). PhD Thesis, Faculdade de Ciências Agrárias e Veterinárias, UNESP, Jaboticabal, SP

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462. doi:10.1016/j.cell.2007.10.022

    Article  PubMed  CAS  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Ann Rev Gen 34:401–437

    Article  CAS  Google Scholar 

  • Pannell JR, Obbard DJ, Buggs RJA (2004) Polyploidy and sexual system: what can we learn from Mercurialis annua? Biol J Linn Soc 82:547–560

    Article  Google Scholar 

  • Pereira AMS, Salomão AN, Januário AH, Bertoni BW, Amui SF, França SC, Cerdeira AL, Moraes RM (2007) Seed germination and triterpenoid content of Anemopaegma arvense (Vell.) Stellfeld varieties. Genet Resour Crop Evol 54:849–854

    Article  Google Scholar 

  • Piazzano M (1998) Números cromossômicos em Bignoniaceae de Argentina. Kurtziana 26:179–189

    Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Ann Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Salomão AN, Allen AC (2001) Polyembriony em Angiospermous trees of the Brazilian cerrado and caatinga vegetation. Acta Bot Bras 15:369–378

    Article  Google Scholar 

  • Sampaio DS (2010) Biologia reprodutiva de espécies de Bignoniaceae ocorrentes no cerrado e variações no sistema de autoincompatibilidade. PhD Thesis, Universidade Federal de Uberlândia, MG

  • Schifino-Wittmann MT (2004) Poliploidia e seu impacto na origem e evolução das plantas silvestres e cultivadas. Rev Bras Agroc 10:151–157

    Google Scholar 

  • Shimizu H (2001) Antioxidant containing plant extracts for cosmetics and pharmaceuticals. JP-Patent 20011139417. May 22

  • Silva MM, Queiroz LP (2003) A família Bignoniaceae na região de Catolés, Chapada Diamantina, Bahia, Brasil. Sitientibus Ser Ci Biol 3:3–21

    Google Scholar 

  • Soltis PS (2005) Ancient and recent polyploidy in angiosperms. New Phytol 166:5–8

    Article  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. TREE 14:348–352

    PubMed  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. PNAS USA 97:7051–7057

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, dePamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348. doi:10.3732/ajb.0800079

    Article  PubMed  Google Scholar 

  • Souza LA, Iwazaki MC, Moscheta IS (2005) Morphology of the pericarp and seed of Tabebuia chrysotricha (Mart. ex DC.) Standl. (Bignoniaceae). Braz Arch Biol Technol 48:407–418

    Google Scholar 

  • Spillane C, Calzada JPV, Grossniklaus U (2001) A sexy apomixer in Como. Plant Cell 13:1480–1491

    PubMed  CAS  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, London

    Google Scholar 

  • Teppner H (1996) Adventitious embryony in Nigritella (Orchidaceae). Folia Geobot Phytotax 31:323–331

    Article  Google Scholar 

  • Tucker MR, Koltunow AMG (2009) Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Funct Plant Biol 36:490–504

    Article  Google Scholar 

  • Uchino T, Kawahara N, Sekita S, Satake M, Saito Y, Tokunaga H, Ando M (2004) Potent protecting effects of catuaba (Anemopaegma mirandum) extracts against hydroperoxide-induced cytotoxicity. Toxicol In Vitro 18:255–263

    Article  PubMed  CAS  Google Scholar 

  • Uma Shaanker R, Ganeshaiah KN (1996) Polyembryony in plants: a weapon in the war over offspring numbers? Trends Ecol Evol 11:26–27

    Article  PubMed  CAS  Google Scholar 

  • Uma Shaanker R, Ganeshaiah KN (1997) Conflict between parent and offspring in plants: predictions processes and evolutionary consequences. Curr Sci 72:932–939

    Google Scholar 

  • Wakana A, Uemoto S (1987) Adventive embryogenesis in Citrus. I. The occurrence of adventive embryos without pollination or fertilization. Am J Bot 74:517–530

    Article  Google Scholar 

Download references

Acknowledgments

This research project was initiated as part of the doctoral thesis of the first author at Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil, and continued at the Universidade de São Paulo, São Paulo, Brazil. We thank the Reserva Ecológica do IBGE (Brasília-DF), the Universidade de Campinas (Campinas, SP) and Universidade de São Paulo for logistical support, as well as the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-142233/2004-8 grant to FFL and a Pq-2 grant to LGL) for funding. The authors also thank Cintia Luíza da Silva Luz and Isabel Gomide Martinelli for assistance with the preparation of Figures and anonymous reviewer for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabiana Firetti-Leggieri or Lúcia G. Lohmann.

Additional information

Communicated by Scott Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firetti-Leggieri, F., Lohmann, L.G., Alcantara, S. et al. Polyploidy and polyembryony in Anemopaegma (Bignonieae, Bignoniaceae). Plant Reprod 26, 43–53 (2013). https://doi.org/10.1007/s00497-012-0206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-012-0206-3

Keywords

Navigation