Sexual Plant Reproduction

, Volume 25, Issue 4, pp 319–335 | Cite as

New insights into the variability of reproduction modes in European populations of Rubus subgen. Rubus: how sexual are polyploid brambles?

  • Petra Šarhanová
  • Radim J. Vašut
  • Martin Dančák
  • Petr Bureš
  • Bohumil Trávníček
Original Article


Rubus subgen. Rubus includes common European species with highly complicated taxonomy, ongoing hybridisation and facultative apomixis. Out of approximately 750 species recognised in Europe, only 3 diploid sexual species are known, along with numerous apomictic brambles that are highly connected to polyploidy. One exception of a tetraploid taxon is R. ser. Glandulosi, which is known for prevalent sexuality. This taxon highly hybridises with tetraploid members of R. ser. Discolores and leads to the origin of many hybridogenous populations and individuals. In this study, we verify reproduction modes in different diploid, triploid and tetraploid species of subgen. Rubus, with focus on taxa putatively involved in such hybridisation by applying flow cytometric seed screen analysis. We found 100 % sexuality of diploid species, whereas triploid species had obligate unreduced embryo sac development. In contrast, tetraploid plants had varying degrees of sexuality. Additionally, we discovered that R. bifrons has the ability to undergo a reproduction mode switch as a reaction to environmental conditions. These results provide insight into reproductive modes of European brambles and shed light on their reticulate evolution and speciation.


Apomixis Endosperm Flow cytometry Hybridisation Rubus 



We thank all colleagues who helped in the fieldwork with finding the localities of bramble species, namely M. Lepší (České Budějovice), P. Lepší (Český Krumlov) and V. Žíla (Strakonice). We also thank Tim Sharbel for comments regarding the manuscript. M. Tesařová and K. Truhlářová (Palacký University, Olomouc) were students who performed part of the confirmatory flow cytometric analyses. This study was supported by the Grant Agency of the Czech Republic (grants no. 206/07/0706 and 206/08/0890) and by the internal grant from Palacký University (PrF 2012/001).

Supplementary material

497_2012_200_MOESM1_ESM.pdf (388 kb)
Supplementary material 1 (PDF 389 kb)
497_2012_200_MOESM2_ESM.pdf (273 kb)
Supplementary material 2 (PDF 273 kb)
497_2012_200_MOESM3_ESM.pdf (893 kb)
Supplementary material 3 (PDF 894 kb)
497_2012_200_MOESM4_ESM.pdf (416 kb)
Supplementary material 4 (PDF 416 kb)


  1. Adams JM (1997) Global land environments since the last interglacial. An atlas of the ice age Earth Web. Accessed 12 March 2011
  2. Åkerberg GE (1939) Apomictic and sexual seed formation in Poa pratensis. Hereditas 25:359–370CrossRefGoogle Scholar
  3. Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G, Romano B, Falcinelli M (2001) Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sex Plant Reprod 14:213–217. doi: 10.1007/s00497-001-0116-2 CrossRefGoogle Scholar
  4. Alice LA, Campbell CS (1999) Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am J Bot 86:81–97. doi: 10.2307/2656957 PubMedCrossRefGoogle Scholar
  5. Amsellem L, Noyer JL, Hossaert-McKey M (2001a) Evidence for a switch in the reproductive biology of Rubus alceifolius (Rosaceae) towards apomixis, between its native range and its area of introduction. Am J Bot 88:2243–2251. doi: 10.2307/3558386 PubMedCrossRefGoogle Scholar
  6. Amsellem L, Chevallier MH, Hossaert-McKey M (2001b) Ploidy level of the invasive weed Rubus alceifolius Poir (Rosaceae), in its native range and in areas of introduction. Plant Syst Evol 228:171–179CrossRefGoogle Scholar
  7. Amsellem L, Pailler T, Noyer JL, Hossert-McKey M (2002) Characterisation of pseudogamous apospory in the reproductive biology of the invasive weed Rubus alceifolius (Rosaceae) in its area of introduction. Acta Bot Gallica 149:217–224CrossRefGoogle Scholar
  8. Araujo ACG, Mukhambetzhanov S, Pozzobon MT, Santana EF, Carneiro VTC (2000) Female gametophyte development in apomictic and sexual Brachiaria brizantha (Poaceae). Rev Cytol Biol Veget Le Botaniste 23:13–26Google Scholar
  9. Araujo ACG, Nobrega JM, Pozzobon MT, Carneiro VTD (2005) Evidence of sexuality in induced tetraploids of Brachiaria brizantha (Poaceae). Euphytica 144:39–50. doi: 10.1007/s10681-005-2842-2 CrossRefGoogle Scholar
  10. Asker SE, Jerling L (1992) Apomixis in Plants. CRC Press, Boca RatonGoogle Scholar
  11. Atkinson TC, Briffa KR, Coope GR (1987) Seasonal temperatures in Britain during the past 22,000 years, reconstructed using beetle remains. Nature 325:587–592. doi: 10.1038/325587a0 CrossRefGoogle Scholar
  12. Baroux C, Spillane C, Grossniklaus U (2002) Evolutionary origins of the endosperm in flowering plants. Genome Biol 30:1026Google Scholar
  13. Bashaw EC, Hussey MA, Hignight KW (1992) Hybridization (n + n and 2n + n) of facultative apomictic species in the Pennisetum agamic complex. Int J Plant Sci 153:466–470. doi: 10.1086/297053 CrossRefGoogle Scholar
  14. Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: tagets, trends and tomorrow. Ann Bot 107:467–590. doi: 10.1093/aob/mcq258 PubMedCrossRefGoogle Scholar
  15. Bicknell RA, Lambie SC, Butler RC (2003) Quantification of progeny classes, in two facultatively apotnictic accessions of Hieracium. Hereditas 138:11–20. doi: 10.1034/j.1601-5223.2003.01624.x PubMedCrossRefGoogle Scholar
  16. Böcher TW (1951) Cytological and embryological studies in the amphi-apomictic Arabis holboellii complex. Det Kongelige Danske Videnskabernes Selskab 6:1–59Google Scholar
  17. Cáceres ME, Matzk F, Busti A, Pupilli F, Arcioni S (2001) Apomixis and sexuality in Paspalum simplex: characterization of the mode of reproduction in segregating progenies by different methods. Sex Plant Reprod 14:201–206. doi: 10.1007/s00497-001-0109-1 CrossRefGoogle Scholar
  18. Campbell CS, Greene CW, Dickinson TA (1991) Reproductive biology in subfam. Maloideae (Rosaceae). Syst Bot 16:333–349. doi: 10.2307/2419284 CrossRefGoogle Scholar
  19. Campbell CS, Greene CW, Neubauer BF, Higgins JM (1985) Apomixis in Amelanchier laevis, shadbush (Rosaceae, Maloideae). Am J Bot 72:1397–1403. doi: 10.2307/2443512 CrossRefGoogle Scholar
  20. Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94. doi: 10.1111/j.1095-8312.1997.tb01778.x CrossRefGoogle Scholar
  21. Carman JG, Jamison M, Elliott E, Dwivedi KK, Naumova TN (2011) Apospory appears to accelerate onset of meiosis and sexual embryo sac formation in Sorghum ovules. BMC Plant Biol 11. doi:  10.1186/1471-2229-11-9
  22. Christen HR (1950) Untersuchungen über die Embryologie pseudogamer und sexueller Rubus-Arten. Ber Schweiz Bot Ges 60:153–198Google Scholar
  23. Clark JR, Stafne ET, Hall HK, Finn CE (2007) Blackberry breeding and genetics. In: Janick J (ed) Plant breeding reviews 29. Wiley, HobokenGoogle Scholar
  24. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846PubMedCrossRefGoogle Scholar
  25. Craig DL (1960) Studies on the cytology and the breeding behaviour of Rubus canadensis L. Can J Genet Cytol 2:96–102Google Scholar
  26. Czapik R (1996) Problems of apomictic reproduction in the families Compositae and Rosaceae. Folia Geobot Phytotax 31:381–387. doi: 10.1007/bf02815382 CrossRefGoogle Scholar
  27. Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the Rosaceae. Am J Bot 79:1081–1086CrossRefGoogle Scholar
  28. Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow-cytometry. Biol Plantarum 31:113–120CrossRefGoogle Scholar
  29. Einset J (1951) Apomixis in American polyploid blackberries. Am J Bot 38:768–772CrossRefGoogle Scholar
  30. Evans LT, Knox RB (1969) Environmental control of reproduction in Themeda australis. Aust J Bot 17:375–389CrossRefGoogle Scholar
  31. Finn CE (1996) Emasculated trailing blackberry flowers set some drupelets when not protected from cross pollination. Hort Sci 31:1035Google Scholar
  32. Focke WO (1910-1914) Species Ruborum. Monographiae Generis Rubi prodromus. Bibl Bo. 72:1–118 (1910), 119–223 (1911), 83:224–498 (1914)Google Scholar
  33. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051. doi: 10.1126/science.220.4601.1049 PubMedCrossRefGoogle Scholar
  34. Galla G, Barcaccia G, Schallau A, Molins MP, Baumlein H, Sharbel TF (2011) The cytohistological basis of apospory in Hypericum perforatum L. Sex Plant Reprod 24:47–61. doi: 10.1007/s00497-010-0147-7 PubMedCrossRefGoogle Scholar
  35. Gounaris EK, Sherwood RT, Gounaris I, Hamilton RH, Gustine DL (1991) Inorganic salts modify embryo sac development in sexual and aposporous Cenchrus ciliaris. Sex Plant Reprod 4:188–192CrossRefGoogle Scholar
  36. Greilhuber J (1988) `Self-tanning’—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158:87–96CrossRefGoogle Scholar
  37. Grazi F, Umaerus M, Åkerberg E (1961) Observations on the mode of reproduction and embryology of Poa pratensis. Hereditas 47:489–541CrossRefGoogle Scholar
  38. Grimanelli D, Hernandez M, Perotti E, Savidan Y (1997) Dosage effects in the endosperm of diplosporous apomictic Tripsacum (Poaceae). Sex Plant Reprod 10:279–282. doi: 10.1007/s004970050098 CrossRefGoogle Scholar
  39. Gustafsson A (1930) Kastrierungen und Pseudogamie bei Rubus. Bot not 83:477–494Google Scholar
  40. Gustafsson A (1942) The origin and properties of the European blackberry flora. Hereditas 28:249–277CrossRefGoogle Scholar
  41. Gustafsson A (1943) The genesis of the European blackberry flora. Acta Universitet Lundskrift 39:1–200Google Scholar
  42. Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35:282–290. doi: 10.2307/3544435 CrossRefGoogle Scholar
  43. Harlan JR, de Wet JMJ (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390CrossRefGoogle Scholar
  44. Haskell G (1960) Role of the male parent in crosses involving apomictic Rubus species. Heredity 14:101–113CrossRefGoogle Scholar
  45. Hintze J (2012) NCSS 8. NCSS, LLC. Kaysville, Utah.
  46. Holm S, Ghatnekar L, Bengtsson BO (1997) Selfing and outcrossing but no apomixis in two natural populations of diploid Potentilla argentea. J Evol Biol 10:343–352. doi: 10.1007/s000360050028 CrossRefGoogle Scholar
  47. Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538. doi: 10.1111/j.1469-8137.2006.01769.x PubMedGoogle Scholar
  48. Hörandl E, Temsch EM (2009) Introgression of apomixis into sexual species is inhibited by mentor effects and ploidy barriers in the Ranunculus auricomus complex. Ann Bot 104:81–89. doi: 10.1093/aob/mcp093 PubMedCrossRefGoogle Scholar
  49. Houliston GJ, Chapman HM, Bicknell RA (2006) The influence of genotype and environment on the fecundity and facultative expression of apomixis in Hieracium pilosella. Folia Geobot 41:165–181. doi: 10.1007/bf02806477 CrossRefGoogle Scholar
  50. Jedrzejczyk I, Sliwinska E (2010) Leaves and seeds as materials for flow cytometric estimation of the genome size of 11 Rosaceae woody species containing DNA-staining inhibitors. J Bot. doi:  10.1155/2010/930895
  51. Jennings DL, Craig DL, Topham PB (1967) The role of the male parent in the reproduction of Rubus. Heredity 22:43–55CrossRefGoogle Scholar
  52. Kaushal P, Malaviya DR, Roy AK, Pathak S, Agrawal A, Khare A, Siddiqui SA (2008) Reproductive pathways of seed development in apomictic guinea grass (Panicum maximum Jacq.) reveal uncoupling of apomixis components. Euphytica 164:81–92. doi: 10.1007/s10681-008-9650-4 CrossRefGoogle Scholar
  53. Kearney M (2005) Hybridization, glaciation and geographical parthenogenesis. Trends Ecol Evol 20:495–502. doi: 10.1016/j.tree.2005.06.005 PubMedCrossRefGoogle Scholar
  54. Kerr EA (1954) Seed development in blackberries. Can J Bot 32:654–672CrossRefGoogle Scholar
  55. Kimber G, Riley R (1963) Haploid angiosperms. Bot Rev 29:480–531CrossRefGoogle Scholar
  56. Knox RB (1967) Apomixis: seasonal and population differences in a grass. Science 157:325–326PubMedCrossRefGoogle Scholar
  57. Kollmann J, Steinger T, Roy BA (2000) Evidence of sexuality in European Rubus (Rosaceae) species based on AFLP and allozyme analysis. Am J Bot 87:1592–1598. doi: 10.2307/2656735 PubMedCrossRefGoogle Scholar
  58. Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5:1425–1437. doi: 10.2307/3869793 PubMedGoogle Scholar
  59. Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574. doi: 10.1146/annurev.arplant.54.110901.160842 PubMedCrossRefGoogle Scholar
  60. Koltunow AM, Johnson SD, Bicknell RA (1998) Sexual and apomictic development in Hieracium. Sex Plant Reprod 11:213–230. doi: 10.1007/s004970050144 CrossRefGoogle Scholar
  61. Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440. doi: 10.1038/336435a0 PubMedCrossRefGoogle Scholar
  62. Krahulcová A, Rotreklová O (2010) Use of flow cytometry in research on apomictic plants. Preslia 82:23–39Google Scholar
  63. Krahulcová A, Trávníček B, Šarhanová P (2013) Karyological variation in the genus Rubus, subgenus Rubus (brambles, Rosaceae): new data from the Czech Republic and synthesis of the current knowledge from Europe. Preslia 85 (in press)Google Scholar
  64. Krahulec F, Krahulcová A, Rosenbaumová R, Plačková I (2011) Production of polyhaploids by facultatively apomictic Pilosella can result in the formation of new genotypes via genome doubling. Preslia 83:471–490Google Scholar
  65. Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Schuhwerk F (2008) The structure of the agamic complex of Hieracium subgen. Pilosella in the Šumava Mts and its comparison with other regions in Central Europe. Preslia 80:1–26Google Scholar
  66. Kurtto A, Weber HE, Lampinen R, Sennikov AN (eds) (2010) Atlas Florae Europaeae. Distribution of vascular plants in Europe. 15. Rosaceae (Rubus). The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, HelsinkiGoogle Scholar
  67. Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43CrossRefGoogle Scholar
  68. Lidforss B (1914) Resumé seiner Arbeiten uber Rubus. Z. Induk. Abstamm. u. Vereb. 12:1–13Google Scholar
  69. Lihová J, Mártonfi P, Mártonfiová L (2000) Experimental study on reproduction of Hypericum × desetangsii nothosubsp. carinthiacum (A. Fröhl.) N. Robson (Hypericaceae). Caryologia 53:127–132Google Scholar
  70. Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 51:123–132CrossRefGoogle Scholar
  71. Mallet J (2007) Hybrid speciation. Nature 446:279–283. doi: 10.1038/nature05706 PubMedCrossRefGoogle Scholar
  72. Matzk F, Meister A, Brutovska R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282. doi: 10.1046/j.1365-313X.2001.01026.x PubMedCrossRefGoogle Scholar
  73. Matzk F, Meister A, Schubert I (2000) An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant J 21:97–108. doi: 10.1046/j.1365-313x.2000.00647.x PubMedCrossRefGoogle Scholar
  74. Matzk F, Prodanovic S, Baumlein H, Schubert I (2005) The inheritance of apomixis in Poa pratensis confirms a five locus model with differences in gene expressivity and penetrance. Plant Cell 17:13–24. doi: 10.1105/tpc.104.027359 PubMedCrossRefGoogle Scholar
  75. Meng R, Finn C (2002) Determining ploidy level and nuclear DNA content in Rubus by flow cytometry. J Am Soc Hort Sci 127(5):767–775Google Scholar
  76. Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall Press, New YorkGoogle Scholar
  77. Naumova TN, Willemse MTM (1995) Ultrastructural characterization of apospory in Panicum maximum. Sex Plant Reprod 8:197–204CrossRefGoogle Scholar
  78. Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, New York, pp 475–518CrossRefGoogle Scholar
  79. Norstog KJ (1957) Polyembryony in Hierochloe odorata (L.) Beauv. Ohio J Sci 57:315–320Google Scholar
  80. Nybom H (1987) Pollen limited seed set in pseudogamous blackberries (Rubus L. subgen. Rubus). Oecologia 72:562–568. doi: 10.1007/bf00378983 CrossRefGoogle Scholar
  81. Nybom H (1988) Apomixis versus sexuality in blackberries (Rubus subgen. Rubus, Rosaceae). Plant Syst Evol 160:207–218. doi: 10.1007/bf00936048 CrossRefGoogle Scholar
  82. Nybom H (1995) Evaluation of interspecific crossing experiments in facultatively apomictic blackberries (Rubus subgen. Rubus) using DNA fingerprinting. Hereditas 122:57–65. doi: 10.1111/j.1601-5223.1995.00057.x CrossRefGoogle Scholar
  83. Ozias-Akins P, van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41:509–537. doi: 10.1146/annurev.genet.40.110405.090511 PubMedCrossRefGoogle Scholar
  84. Paule J, Sharbel TF, Dobeš C (2011) Apomictic and sexual lineages of the Potentilla argentea L. group (Rosaceae): cytotype and molecular genetic differentiation. Taxon 60:721–732Google Scholar
  85. Pfosser M, Amon A, Lelley T, Heberlebors E (1995) Evaluation of sensitivity of flow-cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry 21:387–393. doi: 10.1002/cyto.990210412 PubMedCrossRefGoogle Scholar
  86. Pratt C, Einset J (1955) Development of the embryo sac in some American blackberries. Am J Bot 42:637–645CrossRefGoogle Scholar
  87. Richards AJ (1986) Plant breeding systems. George Allen and Unwin, LondonGoogle Scholar
  88. Robertson A, Rich TCG, Allen AM, Houston L, Roberts C, Bridle JR, Harris SA, Hiscock SJ (2010) Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Mol Ecol 19:1675–1690. doi: 10.1111/j.1365-294X.2010.04585.x PubMedCrossRefGoogle Scholar
  89. Rutishauser A (1954) Die Entwicklungserregug des Endosperms bei pseudogamen Ranunculus-Arten. Mitt D Naturforsch Ges Schaffhausen 25:1–45Google Scholar
  90. Ryde U (2011) Arguments for a narrow species concept in Rubus sect. Corylifolii. Nord J Bot 29:708–721. doi: 10.1111/j.1756-1051.2011.01203.x CrossRefGoogle Scholar
  91. Siena LA, Sartor ME, Espinoza F, Quarin CL, Ortiz JPA (2008) Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species. Sex Plant Reprod 21:205–215. doi: 10.1007/s00497-008-0080-1 CrossRefGoogle Scholar
  92. Sims LE, Price HJ (1985) Nuclear DNA content variation in Helianthus (Asteraceae). Am J Bot 72:1213–1219CrossRefGoogle Scholar
  93. Sliwinska E, Zielinska E, Jedrzejczyk I (2005) Are seeds suitable for flow cytometric estimation of plant genome size? Cytom Part A 64A:72–79CrossRefGoogle Scholar
  94. Snyder LA (1957) Apomixis in Paspalum secans. Am J Bot 44:318–324CrossRefGoogle Scholar
  95. Talent N (2009) Evolution of gametophytic apomixis in flowering plants: an alternative model from Maloid Rosaceae. Theor Biosci 128:121–138. doi: 10.1007/s12064-009-0061-4 CrossRefGoogle Scholar
  96. Talent N, Dickinson TA (2007a) Endosperm formation in aposporous Crataegus (Rosaceae, Spiraeoideae, tribe Pyreae): parallels to Ranunculaceae and Poaceae. New Phytol 173:231–249. doi: 10.1111/j.1469-8137.2006.01918.x PubMedCrossRefGoogle Scholar
  97. Talent N, Dickinson TA (2007b) The potential for ploidy level increases and decreases in Crataegus (Rosaceae, Spiraeoideae, tribe Pyreae). Can J Bot 85:570–584. doi: 10.1139/b07-028 CrossRefGoogle Scholar
  98. Tate JA, Joshi P, Soltis KA, Soltis PS, Soltis DE (2009) On the road to diploidization? Homoeolog loss in independently formed populations of the allopolyploid Tragopogon miscellus (Asteraceae). BMC Plant Biol 9. doi: 10.1186/1471-2229-9-80
  99. Tesařová (2012) Analysis of the genome size in selected Rubus species using flow-cytometry. Bachelor thesis, Palacky University, OlomoucGoogle Scholar
  100. Thomas PT (1940) Reproductive versatility in Rubus. II. The chromosomes and development. J Genet 40:119–128CrossRefGoogle Scholar
  101. Tucker MR, Koltunow AMG (2009) Sexual and asexual (apomictic) seed development in flowering plants: molecular, morphological and evolutionary relationships. Funct Plant Biol 36:490–504. doi: 10.1071/fp09078 CrossRefGoogle Scholar
  102. van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos T Roy Soc B 358:1113–1120. doi: 10.1098/rstb.2003.1302 CrossRefGoogle Scholar
  103. Vinkenoog R, Scott RJ (2001) Autonomous endosperm development in flowering plants: how to overcome the imprinting problem. Sex Plant Reprod 14:189–194. doi: 10.1007/s00497-001-0106-4 CrossRefGoogle Scholar
  104. Vít P, Lepší M, Lepší P (2012) There is no diploid apomict among Czech Sorbus species: a biosystematics revision of S. eximia and discovery of S. barrandienica. Preslia 84:71–96Google Scholar
  105. Voigt ML, Melzer M, Rutten T, Mitchell-Olds T, Sharbel TF (2007) Gametogenesis in the apomictic Boechera holboellii complex: the male perspective. In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. ARG Gantner Verlag, Ruggell, pp 235–258Google Scholar
  106. Weber HE (1995) 4. Rubus. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa, edn 3, vol 4/2A. Blackwell, Berlin, pp 284–595Google Scholar
  107. Weber HE (1996) Former and modern taxonomic treatment of the apomictic Rubus complex. Folia Geobot Phytotax 31:373–380. doi: 10.1007/bf02815381 CrossRefGoogle Scholar
  108. Werlemark G, Nybom H (2003) Pollen donor impact on progenies of pseudogamous blackberries (Rubus subgen. Rubus). Euphytica 133:71–80. doi: 10.1023/a:1025674128000 CrossRefGoogle Scholar
  109. West SA, Lively CM, Read AF (1999) A pluralist approach to sex and recombination. J Evol Biol 12:1003–1012CrossRefGoogle Scholar
  110. Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Plant Sci 169:169–182. doi: 10.1086/523369 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petra Šarhanová
    • 1
    • 4
  • Radim J. Vašut
    • 1
  • Martin Dančák
    • 2
  • Petr Bureš
    • 3
  • Bohumil Trávníček
    • 1
  1. 1.Department of Botany, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic
  2. 2.Department of Ecology and Environmental SciencesPalacký University in OlomoucOlomoucCzech Republic
  3. 3.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
  4. 4.Department of Taxonomy and Evolutionary BiologyLeibniz Institute of Plant Genetics and Crop ResearchGaterslebenGermany

Personalised recommendations