Skip to main content
Log in

Female parthenogenetic apomixis and androsporogenetic parthenogenesis in embryonal cells of Araucaria angustifolia: interpolation of progenesis and asexual heterospory in an artificial sporangium

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Cell fate, development timing and occurrence of reproductive versus apomictic development in gymnosperms are shown to be influenced by culture conditions in vitro. In this study, female parthenogenetic apomixis (fPA), androsporogenetic parthenogenesis (mAP) and progenesis were demonstrated using embryonal initials of Araucaria angustifolia in scaled-up cell suspensions passing through a single-cell bottleneck in darkness and in an artificial sporangium (AS). Expression was based on defined nutrition, hormones and feedforward-adaptive feedback process controls at 23–25 °C and in darkness. In fPA, the nucleus of an embryonal initial undergoes endomitosis and amitosis, forming a diploid egg-equivalent and an apoptotic ventral canal nucleus in a transdifferentiated archegonial tube. Discharge of egg-equivalent cells as parthenospores and their dispersal into the aqueous culture medium were followed by free-nuclear conifer-type proembryogenesis. This replaced the plesiomorphic and central features of proembryogenesis in Araucariaceae. Protoplasmic fusions of embryonal initials were used to reconstruct heterokaryotic expressions of fPA in multiwell plates. In mAP, restitutional meiosis (automixis) was responsible for androsporogenesis and the discharge of monads, dyads, tetrads and polyads. In a display of progenesis, reproductive development was brought to an earlier ontogenetic stage and expressed by embryonal initials. Colchicine increased polyploidy, but androspore formation became aberrant and fragmented. Aberrant automixis led to the formation of chromosomal bouquets, which contributed to genomic silencing in embryonal initials, cytomixis and the formation of pycnotic micronucleated cells. Dispersal of female and male parthenospores displayed heteromorphic asexual heterospory in an aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht-Buehler G (1992) The simulation of microgravity conditions on the ground. Am Soc Grav Space Biol Bull 5(2):3–10

    CAS  Google Scholar 

  • Allen GS (1942) Parthenocarpy, parthenogenesis, and self-sterility of Douglas-fir. J Forestry 40:642–644

    Google Scholar 

  • Andrulis ED, Neiman AM, Zappula DC, Sternglanz R (1998) Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394:592–595

    Article  PubMed  CAS  Google Scholar 

  • Astarita LV, Guerra MP (2000) Conditioning of the culture medium by suspension cells and formation of somatic embryos in Araucaria angustifolia (Coniferae). In Vitro Cell Dev Biol Plant 36:194–200

    Google Scholar 

  • Bell PR (1994) Apomictic features revealed in a conifer. Int J Plant Sci 155:621–622

    Article  Google Scholar 

  • Bell PR (1996) Have necrohormones a role in embryogenesis? Acta Societatis Botanicorum Poloniae 65:1–2

    Google Scholar 

  • Bhatnagar SP, Moitra A (1996) Gymnosperms. New Age International Ltd, New Delhi

    Google Scholar 

  • Biswas C, Johri BM (1997) The gymnosperms. Springer, New York

    Google Scholar 

  • Bold HC, Alexopoulos CJ, Delevoryas T (1980) Morphology of plants and fungi, 4th edn. Harper & Row, New York

    Google Scholar 

  • Burlingame LL (1915) The morphology of Araucaria brasiliensis. III. Fertilization, the embryo and the seed. Bot Gaz 59:1–30

    Article  Google Scholar 

  • Campbell RA, Durzan DJ (1979) Laser activation of phytochrome-controlled germination in Pinus banksiana. Can J For Res 9:522–524

    Article  Google Scholar 

  • Chalupa V, Durzan DJ, Vithayasai C (1976) Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 2. The quantitative analysis of the growth of callus from hypocotyls and radicals. Can J Bot 54:446–455

    Article  CAS  Google Scholar 

  • Cowan CR, Cande WZ (2002) Meiotic telomere clustering is inhibited by colchicine but does not require cytoplasmic microtubules. J Cell Sci 115:3747–3756

    Article  PubMed  CAS  Google Scholar 

  • Cowan CR, Cowan PM, Cande WZ (2001) The polar arrangement of telomeres in interphase and meiosis. Rabl organization and the bouquet. Plant Physiol 125:532–538

    Article  PubMed  CAS  Google Scholar 

  • Crow JF (1991) Was Wright right? Science 253:977

    Article  Google Scholar 

  • Cyr DR (1999) Cryopreservation of embryogenic cultures of conifers and its application to clonal forestry. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4, pp 239–261

  • Davis HT (1962) Introduction to nonlinear differential and integral equations. Dover Publications, New York

    Google Scholar 

  • Dawkins R (1982) The extended phenotype. The gene as a unit of selection. WH Freeman & Co, San Francisco

    Google Scholar 

  • De Meeûs T, Prugnolle F, Agnew F (2007) Asexual reproduction: genetics and evolutionary aspects. Cell Mol Life Sci 64:1355–1372

    Article  PubMed  CAS  Google Scholar 

  • Deal RB, Henikoff S (2010) A chromatin thermostat. Nature 463:887–888

    Article  PubMed  CAS  Google Scholar 

  • Delevoryas T (1980) Polyploidy in gymnosperms. In: Lewis WH (ed) Polyploidy. Biological relevance. Plenum Press, NY, pp 215–218

    Google Scholar 

  • Dogra PD (1966) Observations on Abies pindrow with a discussion on the question of occurrence of apomixis in gymnosperms. Silvae Genetica 15:11–20

    Google Scholar 

  • Dogra PD (1978) Morphology, development and nomenclature of conifer embryo. Phytomorphology 28:307–322

    Google Scholar 

  • Doyle J (1963) Proembryogeny in Pinus in relation to that in other conifers—a survey. Proc Roy Irish Acad 62B:181–216

    Google Scholar 

  • Durzan DJ (1968) Nitrogen metabolism of Picea glauca. I. Seasonal changes of free amino acids in buds, shoot apices and leaves, and the metabolism of uniformly labeled 14C-l-arginine by buds during the onset of dormancy. Can J Bot 46:909–919

    Article  CAS  Google Scholar 

  • Durzan DJ (1969) Nitrogen metabolism of Picea glauca. IV. Metabolism of uniformly labeled 14C-l-arginine, [carbamyl-14C]-L-citrulline, and [1,2,3,4–14C]-γ-guanidinobutyric acid during diurnal changes in the soluble and protein nitrogen associated with the onset of expansion of spruce buds. Can J Biochem 47:771–783

    Article  PubMed  CAS  Google Scholar 

  • Durzan DJ (1973) Nitrogen metabolism of Picea glauca. V. metabolism of uniformly labeled 14C-l-proline and 14C-l-glutamine by dormant buds in late fall. Can J Bot 51:359–369

    Article  CAS  Google Scholar 

  • Durzan DJ (1980) Progress and promise in forest genetics. In: Paper science and technology: the cutting edge, 50th anniversary, May 8–10, 1979, Institute of Paper Chemistry, Appleton, pp 31–60

  • Durzan DJ (1983a) Metabolism of tritiated water during imbibition and germination of jack pine seeds. Can J For Res 13:1204–1218

    Article  CAS  Google Scholar 

  • Durzan DJ (1983b) The fate of carbon during the assimilation of carbamoyl phosphate in white spruce seedlings as revealed by [14C]-carbamoyl phosphate, [14C]-cyanate, and [14C]-bicarbonate labeling patterns. Physiol Plant 59:233–241

    Article  CAS  Google Scholar 

  • Durzan DJ (1996a) Protein ubiquitination in diploid parthenotes of Norway spruce. Intl J Plant Sci 157:17–26

    Article  CAS  Google Scholar 

  • Durzan DJ (1996b) Protein ubiquitination in diploid parthenotes of Norway spruce. Int J Plant Sci 157:17–26

    Article  CAS  Google Scholar 

  • Durzan DJ (2008) Monozygotic cleavage polyembryogenesis. Cytol Genetics 42:159–173 (English and Russian versions)

    Google Scholar 

  • Durzan DJ (2010) Salmine and the homeotic integrity of early embryos of Norway spruce. Cytol Genetics 44:67–78

    Article  Google Scholar 

  • Durzan DJ (2011) Parthenogenetic apomixis and androsporogenesis in a Douglas-fir artificial sporangium. Sex Plant Reprod 24:283–296

    Article  PubMed  Google Scholar 

  • Durzan DJ, Bourgon G (1976) Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 7. Observations on cytoplasmic streaming and effects of l-glutamine and its analogues on subcellular activities. Can J Bot 54:507–517

    Article  CAS  Google Scholar 

  • Durzan DJ, Chalupa V (1976a) Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 3. Growth of cells in liquid suspension cultures in light and darkness. Can J Bot 54:456–467

    Article  Google Scholar 

  • Durzan DJ, Chalupa V (1976b) Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). 6. Free nitrogenous compounds in cell suspension cultures of jack pine as affected by light and darkness. Can J Bot 54:496–506

    Article  CAS  Google Scholar 

  • Durzan DJ, Pedroso MC (2002) Nitric oxide and reactive nitrogen oxide species in plants. Biotechnol Genet Eng Rev 19:293–337

    PubMed  CAS  Google Scholar 

  • Durzan DJ, Mia AJ, Wang BSP (1971) Effects of tritiated water on the metabolism and germination of jack pine seeds. Can J Bot 49:2139–2149

    Article  CAS  Google Scholar 

  • Durzan DJ, Campbell RA, Wilson A (1979) Inhibition of female cone production in white spruce by red light treatment during night under field conditions. Environ Exp Bot 19:133–144

    Article  Google Scholar 

  • Durzan DJ, Jokinen K, Guerra MP, Santerre A, Chalupa V, Havel L (1994) Latent diploid parthenogenesis and parthenote cleavage in egg-equivalents of Norway spruce. Int J Plant Sci 155:677–688

    Article  Google Scholar 

  • Dyer AF (1979) Investigating chromosomes. Edward Arnold, London

    Google Scholar 

  • Eames AE (1913) The morphology of Agathis australis. Ann Bot (London) 27:1–38

    Google Scholar 

  • Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, Berlin

    Google Scholar 

  • Friedman WE (1992) Double fertilization in non flowering seed plants and its relevance to the origin of flowering plants. Int Rev Cytol 140:319–355

    Article  Google Scholar 

  • Garcês H, Durzan DJ, Pedroso MC (2001) Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana. Ann Bot 87:567–574

    Article  CAS  Google Scholar 

  • Giorgetti MR, Vergara M, Evangelista M, Lo Schiavo F, Terzi M, Nuti Ronchi V (1995) On the occurrence of somatic meiosis in embryogenic carrot cells. Mol Gen Genet 246:657–662

    Article  PubMed  CAS  Google Scholar 

  • Giorgetti L, Castiglione R, Martini G, Geri C, Nuti Ronchi V (2007) Methylated DNA sequence extrusion during plant early meiotic prophase. Caryologia 60:279–289

    Google Scholar 

  • Gupta PK, Durzan DJ (1987) Somatic embryos from protoplasts of loblolly pine proembryonal cells. Bio/Technology 5:710–712

    Article  Google Scholar 

  • Gupta PK, Durzan DJ, Finkle B (1987) Somatic polyembryogenesis in embryogenic cell masses of Picea abies (Norway spruce) and Pinus taeda (loblolly pine) after thawing from liquid nitrogen. Can J For Res 17:1130–1134

    Article  Google Scholar 

  • Haines RJ (1983) Embryo development and anatomy in Araucaria Juss. Aust J Bot 31:125–140

    Article  Google Scholar 

  • Haines RJ, Prakash N (1980) Proembryo development and suspensor elongation in Araucaria Juss. Aust J Bot 28:511–522

    Article  Google Scholar 

  • Havel L, Durzan DJ (1996a) Apoptosis in plants. Bot Acta 109:268–277

    CAS  Google Scholar 

  • Havel L, Durzan DJ (1996b) Apoptosis during diploid parthenogenesis and early somatic embryogenesis of Norway spruce. Int J Plant Sci 157:8–16

    Article  Google Scholar 

  • Hawkins BJ, Sweet GB (1989) Photosynthesis and growth of present New Zealand forest trees relate to ancient climates. Ann Sci For 46(suppl):512s–514s

    Article  Google Scholar 

  • Hemsley AR (1994) The origin of the land plant sporophyte: an interpolation scenario. Biol Rev 69:263–273

    Article  Google Scholar 

  • Henderson LJ (1913) The fitness of the environment. Chapter IV. Carbonic acid. MacMillan, New York

    Google Scholar 

  • Heslop-Harrison JS (2000) Comparative genome organization in plants from sequence to chromosomes. Plant Cell 12:617–635

    PubMed  CAS  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (2000) Explosive discharge of pollen tube contents in Torenia fournieri. Plant Physiol 122:11–13

    Article  PubMed  CAS  Google Scholar 

  • Johansen DA (1950) Plant embryology. Chronica Botanica, Waltham Mass

    Google Scholar 

  • Kaur D, Bhatnagar SP (1983) Studies in the family Araucariaceae: embryogeny of Agathis robusta C. Moore (FM Bailey). Beitr Biol Pflanzen 58:369–381

    Google Scholar 

  • Khoshoo TN (1961) Chromosome numbers in gymnosperms. Silvae Genetica 10:1–9

    Article  Google Scholar 

  • Kiessling W, Simpson C, Foote M (2010) Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327:196–198

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication. WH Freeman, New York

    Google Scholar 

  • Lewin BJ (1994) Genes V. Oxford University Press, Oxford

    Google Scholar 

  • Littlewood RK, Munkres KD (1972) Simple and reliable method for replica plating Neurospora crassa. J Bacteriol 110:1017–1021

    PubMed  CAS  Google Scholar 

  • Magalhaes JR, Monte DC, Durzan DJ (2000) Nitric oxide and ethylene emission in Arabidopsis thaliana. Physiol Mol Biol Plant 6:117–127

    Google Scholar 

  • Maggs CA, Callow ME (2002) Algal spores. Encyclopedia of life sciences. Nature Publishing Group, London

    Google Scholar 

  • Mehra PN, Dogra PD (1975) Embryogeny of Pinaceae. 1. Proembryogeny. Proc Indian Natl Sci Acad 41B:486–497

    Google Scholar 

  • Messerli MA, Robinson KR (2003) Ionic and osmotic disruptions of the lily pollen tube oscillator: testing proposed models. Planta 217:147–157

    PubMed  CAS  Google Scholar 

  • Mitchell-Olds T (1995) Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics 140:1105–1109

    PubMed  CAS  Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, London

    Google Scholar 

  • Murray A, Hunt T (1993) The cell cycle. An introduction. WH Freeman, New York

    Google Scholar 

  • Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S (2011) Recent synchronous radiation of a living fossil. Science 334:796–799

    Article  PubMed  CAS  Google Scholar 

  • Namkoong G, Bishir J (1987) The frequency of lethal alleles in forest tree populations. Evolution 41:1123–1127

    Article  Google Scholar 

  • Nelson DL, Cox MM (2008) Principles of biochemistry. WH Freeman, New York

    Google Scholar 

  • Nuti Ronchi V (1995) Mitosis and meiosis in cultured plant cells and their relationship to variant cell types arising in culture. Int Rev Cytol 158:65–140

    Article  Google Scholar 

  • Orr-Ewing AL (1957a) Possible occurrence of viable unfertilized seeds in Douglas-fir. For Sci 3:243–248

    Google Scholar 

  • Orr-Ewing AL (1957b) A cytological study of the effects of self-pollination on Pseudotsuga menziesii (Mirb.) Franco. Silvae Genetica 6:179–185

    Google Scholar 

  • Owens JN, Catalano GL, Morris SJ, Aitken-Christie J (1995) The reproductive biology of Kauri (Agathis australis). III. Proembryogeny and early embryogeny. Int J Plant Sci 156:793–806

    Article  Google Scholar 

  • Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance in plants. Curr Opin Plant Biol 14:195–203

    Article  PubMed  CAS  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan DJ (2000a) A nitric oxide burst precedes apoptosis in an angiosperm and a gymnosperm. J Exp Bot 51:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Pedroso MC, Magalhaes JR, Durzan DJ (2000b) Nitric oxide induces cell death in Taxus cells. Plant Sci 157:173–181

    Article  PubMed  CAS  Google Scholar 

  • Rieger R, Michaelis A, Green MM (1976) Glossary of genetics, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Rohde E (1923) Der plasmodiale Aufbau des Tier- und Pfllanzenkörpers. Zeitschrift für wissenshaftliche Zoologie 120:325–535

    Google Scholar 

  • Rose MR, Nusbaum TJ, Chippindale AK (1996) Laboratory evolution: the experimental wonderland and the Cheshire cat syndrome. In: Rose MR, Lauder GV (eds) Adaptation. Academic Press, San Diego, pp 221–241

    Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signaling. Nature 459:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Saxton WT (1909) Parthenogenesis in Pinus pinaster. Bot Gaz 47:406–409

    Article  Google Scholar 

  • Schlögl PS, Wendt dos Santos AL, Vieira L, Floh EIS, Guerra MP (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tiss Organ Cult 108:173–180

    Article  CAS  Google Scholar 

  • Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork J, Ecker JR (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373

    Article  PubMed  CAS  Google Scholar 

  • Seguí-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404

    Article  Google Scholar 

  • Sharma AK, Sharma A (1980) Chromosome techniques, theory and practice. Frankenham Press Ltd., Norfolk

    Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. Handbuch der Pflanzenatomie, vol 10, part 2. Gebrüder Borntraeger, Berlin

  • Society Linnean (1909) Alternation of generations. Meeting of the Linnean Society on February 18th 1909 following a paper by Dr. WH Lang. New Phytol 8:104–116

    Article  Google Scholar 

  • Somer IF (1988) On a seasonally oscillating growth function. Fishbyte 6:8–11

    Google Scholar 

  • Sporne KR (1965) The morphology of gymnosperms. Hutchinson University Library, London

    Google Scholar 

  • Sterling C (1963) Structure of the male gametophyte in gymnosperms. Biol Rev 38:167–203

    Article  PubMed  CAS  Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958) Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45:693–713

    Article  Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC Press, Boca Raton

    Google Scholar 

  • Taylor TN, Taylor EN, Krings M (2009) Paleobotany. The biology and evolution of fossil plants, 2nd edn. Elsevier, Amsterdam

  • Thomson RB (1927) Evolution of the seed habit in plants. Trans R Soc Can 21:229–272

    Google Scholar 

  • Thomson RB (1945) Polyembryony. Sexual and asexual embryo initiation and food supply. Trans R Soc Can 34:143–169

    Google Scholar 

  • Whittle C-A, Johnston MO (2002) Male-driven evolution of mitochondrial and chloroplast DNA sequences in plants. Mol Biol Evol 19:938–942

    Article  PubMed  CAS  Google Scholar 

  • Wilkins AS, Holliday R (2009) The evolution of meiosis from mitosis. Genetics 181:3–12

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Miguel Guerra provided cultures of Araucaria and images of early somatic embryos rescued from seeds. Ladi Havel provided the protoplast observations. Frank Ventimiglia at Davis and Theresa Scorano from Nuti Ronchi’s laboratory carried out cytological staining with suspension culture runs in nippled flasks. The late Gaylor Stebbins and Ernest Gifford provided encouragement for this study. The late Prem Dogra offered insights and reprints of his research on conifer parthenogenesis while visiting Davis. The late F.C. Steward and Adrian Srb (Cornell) provided training in expressions of plant cell totipotency in nippled flasks and on the utility of heterokaryotic assays. Studies with tritiated water and nitrogen metabolism in conifers with carbon-14 were supported by the Canadian Forestry Service. Research relating to conifer cell biology at Davis was supported in part by McIntyre-Stennis funds (1990–1994) and by a NASA grant to DJD on tissue engineering in simulated microgravity (NG 9–825) (1996–1998). Comments on a preliminary manuscript were provided by Michael Mogie. The author declares no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don J. Durzan.

Additional information

Communicated by Scott Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durzan, D.J. Female parthenogenetic apomixis and androsporogenetic parthenogenesis in embryonal cells of Araucaria angustifolia: interpolation of progenesis and asexual heterospory in an artificial sporangium. Sex Plant Reprod 25, 227–246 (2012). https://doi.org/10.1007/s00497-012-0189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-012-0189-0

Keywords

Navigation