Skip to main content
Log in

Localisation pattern of homogalacturonan and arabinogalactan proteins in developing ovules of the gymnosperm plant Larix decidua Mill

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

We have identified and characterised the temporal and spatial distribution of the homogalacturonan (HG) and arabinogalactan proteins (AGP) epitopes that are recognised by the antibodies JIM5, JIM7, LM2, JIM4, JIM8 and JIM13 during ovule differentiation in Larix decidua Mill. The results obtained clearly show differences in the pattern of localisation of specific HG epitopes between generative and somatic cells of the ovule. Immunocytochemical studies revealed that the presence of low-esterified HG is characteristic only of the wall of megasporocyte and megaspores. In maturing female gametophytes, highly esterified HG was the main form present, and the central vacuole of free nuclear gametophytes was particularly rich in this category of HG. This pool will probably be used in cell wall building during cellularisation. The selective labelling obtained with AGP antibodies indicates that some AGPs can be used as markers for gametophytic and sporophytic cells differentiation. Our results demonstrated that the AGPs recognised by JIM4 may constitute molecules determining changes in ovule cell development programs. Just after the end of meiosis, the signal detected with JIM4 labelling appeared only in functional and degenerating megaspores. This suggests that the antigens bound by JIM4 are involved in the initiation of female gametogenesis in L. decidua. Moreover, the analysis of AGPs distribution showed that differentiation of the nucellus cells occurs in the very young ovule stage before megasporogenesis. Throughout the period of ovule development, the pattern of localisation of the studied AGPs was different both in tapetum cells surrounding the gametophyte and in nucellus cells. Changes in the distribution of AGPs were also observed in the nucellus of the mature ovule, and they could represent an indicator of tissue arrangement to interact with the growing pollen tube. The possible role of AGPs in fertilisation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta-Garcia G, Vielle-Calzada JP (2004) A classical arabinogalactan protein is essential for the initiation of female gametogenesis in Arabidopsis. Plant Cell 16:2614–2628

    Article  CAS  PubMed  Google Scholar 

  • Aouali N, Laporte P, Clément Ch (2001) Pectin secretion and distribution in the anther during pollen development in Lilium. Planta 213:71–79

    Article  CAS  PubMed  Google Scholar 

  • Bednarska E, Lenartowska M, Niekraś L (2005) Localization of pectins and Ca2+ ions in unpollinated and pollinated wet (Petunia hybrida Hort.) and dry (Haemanthus albiflos L.) stigma. Folia Histochem Cytobiol 43:259

    Google Scholar 

  • Caffal KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Res 344:1879–1900

    Article  Google Scholar 

  • Casero PJ, Casimiro I, Knox JP (1998) Occurrence of cell surface arabinogalactan-protein and extension epitopes in relation to pericycle and vascular tissue development in the root apex of four species. Planta 204:252–259

    Article  CAS  Google Scholar 

  • Cheung AY, Wang H, Wu HM (1995) A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82:383–393

    Article  CAS  PubMed  Google Scholar 

  • Chudzik B, Zarzyka B, Śnieżko R (2005) Immunodetection of arabinogalactan proteins in different types of plant ovules. Acta Biologica Cracoviensia 47:139–146

    Google Scholar 

  • Clausen MH, Willats WGT, Knox JP (2003) Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydrate Res 338:1797–1800

    Article  CAS  Google Scholar 

  • Coimbra S, Duarte C (2003) Arabinogalactan proteins may facilitate the movement of pollen tubes from the stigma to the ovules in Actinidia deliciosa and Amaranthus hypochondriacus. Euphytica 133:171–178

    Article  CAS  Google Scholar 

  • Coimbra S, Salema R (1997) Immunolocalization of arabinogalactan proteins in Amaranthus hypochondriacus L. ovules. Protoplasma 199:75–82

    Article  CAS  Google Scholar 

  • Coimbra S, Almeida J, Junqueira V, Costa ML, Pereira LG (2007) Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. J Exp Bot 58:4027–4035

    Article  CAS  PubMed  Google Scholar 

  • Dolan L, Linstead P, Roberts K (1995) An AGP epitope distinguishes a central metaxylem initial from other vascular initials in the Arabidopsis root. Protoplasma 189:149–155

    Article  CAS  Google Scholar 

  • Gedalovich E, Kuijt J (1987) An ultrastructural study of the viscin tissue of Phthirusa pyrifolia (A. B. K.) Eichler (Loranthaceae). Protoplasma 187:145–155

    Article  Google Scholar 

  • Gibeaut DM, Carpita NC (1991) Tracing cell wall biogenesis in intact cells and plants, selective turnover and alteration of soluble and cell wall polysaccharides in grasses. Plant Physiol 97:551–561

    Article  CAS  PubMed  Google Scholar 

  • Huang B-Q, Russell SD (1992) Female germ unit: organization, isolation and function. Intl Rev Cytol 140:233–292

    Article  Google Scholar 

  • Jauh GY, Lord EM (1995) Localization of pectins and arabinogalactan-proteins in lily (Lilium longiflorum L.) pollen tube and style, and their possible roles in pollination. Planta 199:251–261

    Google Scholar 

  • Knox JP (1997) The use of antibodies to study the architecture and development regulation of plant cell walls. Intl Rev Cytol 171:79–120

    Article  CAS  Google Scholar 

  • Knox JP (2006) Up against the wall: arabinogalactan-protein dynamics at the cell surfaces. New Phytol 169:443–445

    Article  CAS  PubMed  Google Scholar 

  • Kreuger M, Van Holst GJ (1996) Arabinogalactan proteins and plant differentiation. Plant Mol Biol 30:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Lenartowska M, Rodriguez-Garcia MI, Bednarska E (2001) Immunocytochemical localization of esterified and unesterified pectins in unpollinated and pollinated styles of Petunia hybrida. Hort Planta 213:182–191

    CAS  Google Scholar 

  • von Lurzer E (1956) Megasporenmembranen bei einigen Cupressaceen. Grana Palynol 1:70–78

    Google Scholar 

  • Majewska-Sawka A, Nothnagel A (2000) The multiple roles of arabinogalactan proteins in plant development. Plant Physiol 122:3–9

    Article  CAS  PubMed  Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16:142–153

    Article  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  • Mollet JC, Park SY, Nothnagel EA, Lord EM (2000) A lily stylar pectin is necessary for pollen tube adhesion to an in vitro stylar matrix. Plant Cell 12:1737–1749

    Article  CAS  PubMed  Google Scholar 

  • Osorio S, Castillejo C, Quesada MA, Medina-Escobar N, Brownsey GJ, Suau R, Heredia A, Botella A, Valpuesta V (2008) Partial demethylation of oligogalacturonides by pectin methyl esterase 1 is required for eliciting defence response in wild strawberry (Fragaria vesca). Plant J 54:43–55

    Article  CAS  PubMed  Google Scholar 

  • Pennell RI, Roberts K (1990) Sexual development in the pea is presaged by altered expression of arabinogalactan protein. Lett Nat 344:547–549

    Article  Google Scholar 

  • Pennell RI, Janniche L, Kjellbom P, Scofield GN, Peart JM, Roberts K (1991) Developmental regulation of plasma membrane arabinogalactan protein epitope in oilseed rape flowers. Plant Cell 3:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Zhao J (2006) Localization of arabinogalactan proteins In egg cells, zygotes, and two-celled proembryos and effects of β-D-glucosyl Yariv reagent on egg cell fertilization and zygote division in Nicotiana tabacum L. J Exp Bot 57:2061–2074

    Article  CAS  PubMed  Google Scholar 

  • Ramawat KG, Merillon JM (2008) Bioactive molecules and medicinal plants. Springer, Berlin

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Runions CJ, Owens JN (1999) Sexual reproduction of interior spruce (Pinaceae). I. Pollen germination to archegonial maturation. Intl J Plant Sci 160:631–640

    Article  Google Scholar 

  • Samaj J, Samajová O, Peters M, Baluska F, Lichtscheidl I, Knox JP, Volkmann D (2000) Immunolocalization of LM2 arabinogalactan protein epitope associated with endomembranes of plant cells. Protoplasma 212:186–196

    Article  CAS  Google Scholar 

  • Schindler T, Bergfeld R, Schopfer P (1995) Arabinogalactan proteins in maize coleoptiles: developmental relationship to cell death during xylem differentiation but not to extension growth. Plant J 7:25–36

    Article  CAS  PubMed  Google Scholar 

  • Seifert GJ, Roberts K (2007) The biology of arabinogalactan proteins. Annu Rev Plant Biol 58:137–161

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM (2001) Arabinogalactan-proteins: structure, expression and function. Cell Mol Life Sci 58:1399–1417

    Article  CAS  PubMed  Google Scholar 

  • Smallwood M, Yates EA, Willats WGT, Martin H, Knox JP (1996) Immunochemical comparison of membrane-associated and secreted arabinogalactan-proteins in rice and carrot. Planta 198:452–459

    Article  CAS  Google Scholar 

  • Southworth D, Kwiatkowski S (1996) Arabinogalactan proteins at the cell surface of Brassica sperm and Lilium sperm and generative cells. Sex Plant Reprod 9:262–272

    Article  Google Scholar 

  • Takeuchi Y, Komamine A (1980) Turnover of cell wall polysaccharides of a Vinca rosea suspension culture. III. Turnover of arabinogalactan. Physiol Plant 50:113–118

    Article  CAS  Google Scholar 

  • Webb MC, Gunning BE (1990) Embryo sac development in Arabidopsis thaliana. Sex Plant Reprod 3:244–256

    Article  Google Scholar 

  • Willats WGT, Limberg G, Buchholt HC, van Alebeek G-J, Benen J, Christensen TMIE, Visser J, Voragen A, Mikkelsen JD, Knox JP (2000) Analysis of pectic epitopes recognized by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides and enzymatic degradation. Carbohydrate Res 327:309–320

    Article  CAS  Google Scholar 

  • Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

  • Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2:851–860

    Article  CAS  PubMed  Google Scholar 

  • Wu HM, Wang H, Cheung AY (1995) A pollen-tube growth-stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82:395–403

    Article  CAS  PubMed  Google Scholar 

  • Wu H, de Graaf B, Mariani C, Cheung AY (2001) Hydroxyproline rich glycoproteins in plant reproductive tissues: structure, functions and regulation. Cell Mol Life Sci 58:1418–1429

    Article  CAS  PubMed  Google Scholar 

  • Yates EA, Knox JP (1994) Investigation into the occurrence of plant cell surface epitopes in exudates gums. Carbohydr Polym 24:281–286

    Article  Google Scholar 

  • Yates EA, Valdor JF, Haslam SM, Morris HR, Dell A, Mackie W, Knox JP (1996) Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6:131–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank M. Świdziński for technical assistance. This work was supported by European Social Fund and Kujawsko-Pomorski Province Council project “Stypendia dla doktorantów 2008/2009—ZPORR” and Nicolaus Copernicus University Grant [304-B].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Rafińska.

Additional information

Communicated by Scott Russell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

. A-B Localisation of callose. C-D Controls. (A) The wall of the megasporocyte is devoid of callose. (B) Positive control. Callose is present in cells walls of the ovuliferous scale. (B)C-D Controls for antibodies (C) Negative control showing no labelling in the ovule when first antibody was omitted. (D) Negative immunodepletion control in which JIM13 antibody was preincubated with inhibitor (gum arabic) showing no labelling of the ovule. MMC – megasporocyte, T – tapetum, SC – ovuliferous scale, G – gametophyte, FN – free nucleus, N – nucellus, V-vacuole. Bar 10 μm (TIFF 1019 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafińska, K., Bednarska, E. Localisation pattern of homogalacturonan and arabinogalactan proteins in developing ovules of the gymnosperm plant Larix decidua Mill. Sex Plant Reprod 24, 75–87 (2011). https://doi.org/10.1007/s00497-010-0154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-010-0154-8

Keywords

Navigation