Skip to main content
Log in

The cytohistological basis of apospory in Hypericum perforatum L.

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

St. John’s wort (Hypericum perforatum L., 2n = 4x = 32) is a medicinal plant that produces pharmaceutically important metabolites with antidepressive, anticancer and antiviral activities. It is also regarded as a serious weed in many countries. H. perforatum is furthermore an attractive model system for the study of apomixis. Natural populations of H. perforatum are predominantly composed of tetraploid individuals, although diploids and hexaploids are known to occur. It has been demonstrated that while diploids are sexual, polyploids are facultative apomictic whereby a single individual can produce both sexual and apomictic seeds. Despite our increasing understanding of gamete formation in sexually reproducing species, relatively little is known regarding the cytological basis of reproduction in H. perforatum. Here, we have studied embryo sac formation and the genetic constitution of seeds by means of staining-clearing of ovules/ovaries, DIC microscopy and flow cytometric seed screening (FCSS) of embryo and endosperm DNA contents. Comparisons of female sporogenesis and gametogenesis between sexual and apomictic accessions have enabled the identification of major phenotypic differences in embryo sac formation, in addition to complex fertilization scenarios entailing reduced and unreduced male and female gametes. These data provide new insights into the production of aposporous seeds in H. perforatum, and complement ongoing population genetic, genomic and transcriptomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertini E, Barcaccia G, Porceddu A, Sorbolini S, Falcinelli M (2001) Mode of reproduction is detected by Parth1 and Sex1 SCAR markers in a wide range of facultative apomictic Kentucky bluegrass varieties. Mol Breed 7:293–300

    Article  CAS  Google Scholar 

  • Barcaccia G, Mazzucato A, Falcinelli M, Veronesi F (1996) Callose localization in cell walls during meiotic and apomeiotic megasporogenesis in diploid alfalfa (Medicago spp.). Caryologia 49:45–56

    Google Scholar 

  • Barcaccia G, Mazzucato A, Albertini E, Zethof J, Gerats A, Pezzotti P, Falcinelli M (1998) Inheritance of parthenogenesis in Poa pratensis L.: auxin test and AFLP linkage analyses support monogenic control. Theor Appl Genet 97:74–82

    Article  CAS  Google Scholar 

  • Barcaccia G, Varotto S, Meneghetti S, Albertini E, Porceddu A, Parrini P, Lucchin M (2001) Analysis of gene expression during flowering in apomeiotic mutants of Medicago spp.: cloning of ESTs and candidate genes for 2n eggs. Sex Plant Reprod 14:233–238

    Article  CAS  Google Scholar 

  • Barcaccia G, Bäumlein H, Sharbel TF (2007) Apomixis in St. John’s Wort (Hypericum perforatum): an overview and glimpse towards the future. In: Hoerandl E, Grossniklauss U, Van Dijk P, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. International Association for Plant Taxonomy, Koeltz Scientific Books, Koenigstein, pp 259–280

    Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 274:227–274

    Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16(Suppl.):S228–245

    Google Scholar 

  • Carman JG, Crane CF, Riera-Lizarazu O (1991) Comparative histology of cell walls during meiotic and apomeiotic megasporogenesis in two hexaploid Australasian Elymus species. Crop Sci 31:1527–1532

    Article  Google Scholar 

  • Christensen CA, King EJ, Jordan JR, Drews GN (1997) Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10:49–64

    Article  Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • Groß-Hardt R, Kägi C, Baumann N, Moore JM, Baskar R, Gagliano W, Jürgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5:e47

    Article  PubMed  Google Scholar 

  • Gustine DL, Sherwood RT (1997) Apospory-linked molecular markers in buffelgrass. Crop Sci 37:947–951

    Article  CAS  Google Scholar 

  • Haig D (1990) New perspectives on the angiosperm female gametophyte. Bot Rev 56:236–275

    Google Scholar 

  • Huang B-Q, Sheridan WF (1994) Female gametophyte development in maize: microtubular organization and embryo sac polarity. Plant Cell 6:845–861

    Article  PubMed  Google Scholar 

  • Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE (1980) The significance of genetic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9

    Google Scholar 

  • Koltunow AM (1993) Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5(10):1425–1437

    Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  • Koltunow AM, Johnson SD, Bicknell RA (1998) Sexual and apomictic development in Hieracium. Sex Plant Reprod 11:213–230

    Article  Google Scholar 

  • Koperdakova J, Brutovska R, Cellarova E (2004) Reproduction pathway analysis of several Hypericum perforatum L. somaclonal families. Hereditas 140:34–41

    Article  PubMed  Google Scholar 

  • Leblanc O, Peel MD, Carman JG, Savidan Y (1993) Megasporogenesis in sexual and apomictic Trypsacum species using interference contrasts and fluorescence. Apomixis Newslett 6:14–17

    Google Scholar 

  • Mansfield SG, Briarty LG, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 69:447–460

    Article  Google Scholar 

  • Mártonfi P, Brutovská R, Cellárová E, Repcák M (1996a) Apomixis and hybridity in Hypericum perforatum. Folia Geobot Phytotax 31:389–396

    Article  Google Scholar 

  • Mártonfi P, Repcák M, Mihoková L (1996b) Hypericum maculatum subsp. Maculatum × H. perforatum (Hypericaceae): corroboration of natural hybridization in Hypericum by secondary metabolite analysis. Folia Geobot Phytotax 31:245–250

    Article  Google Scholar 

  • Matzk F (1991) New efforts to overcome apomixis in Poa pratensis L. Euphytica 55:65–72

    Article  Google Scholar 

  • Matzk F, Meister A, Brutovská R, Schubert I (2001) Reconstruction of reproductive diversity in Hypericum perforatum L. opens novel strategies to manage apomixis. Plant J 26:275–282

    Article  CAS  PubMed  Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants. Chapman & Hall, London (UK)

    Google Scholar 

  • Naumova T, Den Nijs APM, Willemse MTM (1993) Quantitative analysis of aposporous parthenogenesis in Poa pratensis genotypes. Acta Bot Neerl 42:299–312

    Google Scholar 

  • Noack KL (1939) Ãœber Hypericum- Kreuzungen VI: Fortpflanzungsverhältnisse und bastarde von Hypericum perforatumL. Z Indukt Abstamm Vererbungsl 76:569–601

    Article  Google Scholar 

  • Noack KL (1941) Geschlechtsverlust und Bastardierung beim Johanniskraut. Forsch Fortschr 17:13–15

    Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, New York, pp 475–518

    Google Scholar 

  • Okada T, Catanach AS, Johnson SD, Bicknell RA, Koltunow AM (2007) An Hieracium mutant, loss of apomeiosis 1 (loa1) is defective in the initiation of apomixis. Sex Plant Reprod 20:199–211

    Article  Google Scholar 

  • Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–634

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Lubbers EL, Hanna WW, McNay JW (1993) Transmission of the apomictic mode of reproduction in Pennisetum: coinheritance of the trait and molecular markers. Theor Appl Genet 85:632–638

    Article  Google Scholar 

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus which may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    Article  CAS  PubMed  Google Scholar 

  • Pagnussat GC, Yu HJ, Sundaresan V (2007) Cell fate switch of synergid to egg cell in Arabidopsis eostre mutant embryo sacs arises from misexpression of the BEL1-like homeodomain gene BLH. Plant Cell 19:3578–3592

    Article  CAS  PubMed  Google Scholar 

  • Peel MD, Carman JG, Leblanc O (1997) Megasporocyte callose in apomictic buffelgrass, Kentucky bluegrass, Pennisetum squamulatum Fresen, Tripsacum L., and weeping lovegrass. Crop Sci 37:724–732

    Article  Google Scholar 

  • Pessino SC, Ortiz J, Leblanc O, do Valle CB, Hayward MD (1997) Identification of a maize linkage group related to apomixis in Brachiaria. Theor Appl Genet 94:439–444

    Article  CAS  Google Scholar 

  • Robinson-Beers K, Pruitt RE, Gasser CS (1992) Ovule development in wild-type Arabidopsis and two female-sterile mutants. Plant Cell 4:1237–1249

    Article  PubMed  Google Scholar 

  • Robson NKB (2002) Studies in the genus Hypericum L. (Guttiferae) 4(2). Section 9. Hypericum sensu latu (part 2): subsection 1. Hypericum series 1. Hypericum. Bull Nat Hist Mus Lond (Bot) 32:61–123

  • Roche D, Cong P, Chen ZB, Hanna WW, Gustine DL, Sherwood RT, Ozias-Akins P (1999) An apospory-specific genomic region is conserved between buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. Plant J 19:203–208

    Article  CAS  PubMed  Google Scholar 

  • Rodkiewicz B (1970) Callose in cell walls during megasporogenesis in angiosperms. Planta 93:39–47

    Article  Google Scholar 

  • Schneitz K, Hülskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7:731–749

    Article  Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341

    CAS  PubMed  Google Scholar 

  • Sheridan WF, Golubeva EA, Abrhamova LI, Golubovskaya IN (1999) The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics 153:933–941

    CAS  PubMed  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  CAS  PubMed  Google Scholar 

  • Stelly DM, Peloquin SJ, Palmer RG, Crane CF (1984) Mayer’s hemalum-methyl salycilate: a stain-clearing technique for observations within whole ovules. Stain Technol 59:155–161

    Google Scholar 

  • Tucker MR, Paech NA, Willemse MTM, Koltunow AM (2001) Dynamics of callose deposition and ß-1, 3-glucanase expression during reproductive events in sexual and apomictic Hieracium. Planta 212:487–498

    Article  CAS  PubMed  Google Scholar 

  • Voigt M-L, Melzer M, Rutten T, Mitchell-Olds T, Sharbel TF (2007) Gametogenesis in the apomictic Boechera holboellii complex: the male perspective. In: Hoerandl E, Grossniklauss U, Van Dijk P, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. International Association for Plant Taxonomy, Koeltz Scientific Books, Koenigstein, pp 235–258

    Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4(7):759–771

    Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. I. Schubert for his valuable comments on the manuscript. We thank the apomixis research group for enlightening discussions and technical support, and J. Maron (University of Montana, Missoula) for having kindly supplied seed stocks. Authors wish to thank also the anonymous reviewers for their constructive critics and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Sharbel.

Additional information

Communicated by Thomas Dresselhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galla, G., Barcaccia, G., Schallau, A. et al. The cytohistological basis of apospory in Hypericum perforatum L.. Sex Plant Reprod 24, 47–61 (2011). https://doi.org/10.1007/s00497-010-0147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-010-0147-7

Keywords

Navigation