Skip to main content
Log in

Self-incompatibility in a distylous species of Rubiaceae: is there a single incompatibility response of the morphs?

  • Original Article
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

Heterostyly is a genetically controlled floral polymorphism usually associated with an incompatibility system. This set of features is known to occur in several angiosperm families, but some aspects of its biology has not been well studied. The present study investigates cellular aspects of the pollen–pistil interaction after compatible and incompatible pollinations of Psychotria nuda, to increase our knowledge of heteromorphic self-incompatibility (HetSI). The use of bright field, fluorescence and transmission electron microscopy methods allowed us to demonstrate that pollen tubes behave differently after incompatible and compatible pollinations. Pollen tubes were particularly distinct after incompatible pollinations of L- and S-morph flowers. Relative to compatible pollen tubes, incompatible L-morph tubes had a drastic reduction in cellular contents, but no cell rupture. Incompatible S-morph tubes exhibited dense cytoplasm in apical regions, as well as in other regions, accompanied by a rupture of the apex. These results support the hypothesis that L- and S-morph flowers have different incompatibility mechanisms during HetSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson WR (1973) A morphological hypothesis for the origin of heterostyly in Rubiaceae. Taxon 22:537–542

    Article  Google Scholar 

  • Anderson JM, Barrett SCH (1986) Pollen tube growth in tristylous Pontederia cordata (Pontederiaceae). Can J Bot 64:2602–2607

    Article  Google Scholar 

  • Barrett SCH, Cruzan MB (1994) Incompatibility in heterostylous plants. In: Williams EG, Knox RB, Clarke AE (eds) Genetic control of self-incompatibility and reproductive development. Kluwer, Dordrecht, pp 189–219

  • Barrett SCH, Glover DE (1985) On the Darwinian hypothesis of the adaptive significance of tristyly. Evolution 37:766–774

    Article  Google Scholar 

  • Bawa KS, Beach JH (1983) Self-incompatibility systems in the Rubiaceae of a tropical lowland wet forest. Am J Bot 70:1281–1288

    Article  Google Scholar 

  • Bell PR (1995) Incompatibility in flowering plants: adaptation of an ancient response. Plant Cell 7:5–16

    Article  PubMed  CAS  Google Scholar 

  • Castro CC, Araújo AC (2004) Distyly and sequential pollinators of Psychotria nuda (Rubiaceae) in the Atlantic rain forest, Brazil. Plant Syst Evol 244:131–139. doi:10.1007/s00606-003-0036-8

    Article  Google Scholar 

  • Cheung AY (1995) Pollen–pistil interactions in compatible pollination. Proc Natl Acad Sci USA 92:3077–3080

    Article  PubMed  CAS  Google Scholar 

  • Dulberger R (1992) Floral polymorphisms and their functional significance in the heterostylous syndrome. In: Barrett SCH (ed) Evolution and function of heterostyly. Springer, Berlin, pp 41–84

  • Endress PK (1998) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge

    Google Scholar 

  • Faivre AE (2002) Variation in pollen tube inhibition sites within and among three heterostylous species of Rubiaceae. Int J Plant Sci 163(5):783–794. doi:10.1086/341230

    Article  Google Scholar 

  • Ferguson C, Teeri TT, Siika-aho M, Read SM, Bacic A (1998) Location of cellulose and callose in pollen tubes and grains of Nicotiana tabacum. Planta 206:452–460

    Article  CAS  Google Scholar 

  • FIDERJ (1978) Indicadores Climatológicos do Estado do Rio de Janeiro. Governadoria do Estado do Rio de Janeiro, Secretaria de Planejamento e Coordenação Geral (SECPLAN), Fundação Instituto de Desenvolvimento Econômico e Social do Rio de Janeiro (FIDERJ). Sistemas de Informação para o Planejamento Estadual (SIPE), pp 156

  • Franklin FCH, Lawrence MJ, Franklin-Tong VE (1995) Cell and molecular biology of self-incompatibility in flowering plants. Int Rev Cytol 158:1–64

    Article  CAS  Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    Article  PubMed  CAS  Google Scholar 

  • Geitmann A, Snowman BN, Emons AMC, Franklin-Tong VE (2000) Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell 12(7):1239–1251

    Article  PubMed  CAS  Google Scholar 

  • Gibbs PE (1986) Do homomorphic and heteromorphic self-incompatibilities have the same sporophytic mechanism? Plant Syst Evol 154:285–323

    Article  Google Scholar 

  • Hiratsuka R, Yamada Y, Terasaka O (2002) Programmed cell death of Pinus nucellus in response to pollen tube penetration. J Plant Res 115:141–148. doi:10.1007/s102650200019

    Article  PubMed  Google Scholar 

  • Khosravi D, Joulaie DR, Shore JS (2003) Immunocytochemical distribution of polygalacturonase and pectins in styles of distylous and homostylous Turneraceae. Sex Plant Reprod 16:179–190. doi:10.1007/s00497-003-0192-6

    Article  CAS  Google Scholar 

  • Klein DE (2007) Estudo do sistema heteromórfico de auto-incompatibilidade em uma população de Psychotria nuda (Cham. & Schlecht.) Wawra (Rubiaceae): morfologia floral; sucesso reprodutivo; spectos celulares e teciduais; e análise da composição protéica de partes florais. Dr Thesis, Universidade Estadual do Norte Fluminense-UENF, Campos dos Goytacazes, Brazil, pp 173

  • Lewis D (1943) The physiology of incompatibility in plants. II. Linum grandiflorum. Ann Bot Lond 7:115–122

    Google Scholar 

  • Lubliner N, Singh-Cundy DT, Singh-Cundy A (2003) Characterization of the pollen growth transition in self-incompatible Petunia inflate. Sex Plant Reprod 15:243–253

    Google Scholar 

  • Martin FW (1959) Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol 37:125

    Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • McKee J, Richards AJ (1998) The effect of temperature on reproduction in five Primula species. Ann Bot Lond 82(3):359–374

    Article  Google Scholar 

  • McKenna MA (1992) Pollen competition in heterostylous plants. In: Barrett SCH (ed) Evolution and function of heterostyly. Springer, Berlin, pp 225–245

  • Miljuš-Đukić J, Ninković S, Radović S, Maksimović V, Brkljačić J, Nešković M (2004) Detection of proteins possibly involved in self-incompatibility response in distylous buckwheat. Biol Plant 48(2):293–296. doi:10.1023/B:BIOP.0000033459.48057.8b

    Article  Google Scholar 

  • Oliveira JS, Dereczynski CP, Machado CO (2006) Climatologia da precipitação no município do Rio de Janeiro. CD-Room do XIV Congresso Brasileiro de Meteorologia, Florianópolis, Brasil

  • Pereira ZV, Vieira MF, Carvalho-Okano RM (2006) Fenologia da floração, morfologia floral sistema de incompatibilidade em espécies distílicas de Rubiaceae em fragmento florestal do Sudeste brasileiro. Rev Bras Bot 29(3):471–480. doi:10.1590/S0100-84042006000300014

    Article  Google Scholar 

  • Scribailo RW, Barrett SCH (1991) Pollen–pistil interactions in tristylous Pontederia sagittata Presl. (Pontederiaceae). 1. Floral heteromorphism and structural features of the pollen tube pathway. Am J Bot 78:1643–1661

    Article  Google Scholar 

  • Shivanna KR, Heslop-Harrison J, Heslop-Harrison Y (1981) Heterostyly in Primula. 2. Sites of pollen inhibition, and effects of pistil constituents on compatible and incompatible pollen tube growth. Protoplasma 107:319–337

    Article  Google Scholar 

  • Shore JS, Barrett SCH (1984) The effect of pollination intensity and incompatible pollen on seed set in Turnera ulmifolia (Turneraceae). Can J Bot 62:1298–1303

    Article  Google Scholar 

  • Talora DC, Morellato PC (2000) Fenologia de espécies arbóreas em floresta de planície litorânea do sudeste do Brasil. Revta Brasil Bot 23(1):13–26

    Article  Google Scholar 

  • Tamari F, Athanasiou A, Shore JS (2001) Pollen tube growth and inhibition in distylous and homostylous Turnera and Piriqueta (Turneraceae). Can J Bot 79:578–591

    Article  Google Scholar 

  • Teixeira LAG, Machado IC (2004a) Biologia da polinização e sistema reprodutivo de Psychotria barbiflora DC. (Rubiaceae). Acta Bot Bras 18:853–862

    Article  Google Scholar 

  • Teixeira LAG, Machado IC (2004b) Sabicea cinerea Aubl. (Rubiaceae): distilia e polinização em um fragmento de floresta Atlântica em Pernambuco, Nordeste do Brasil. Rev Bras Bot 27:193–204

    Google Scholar 

  • Vianello RL, Alves AR (1991) Meteorologia básica e aplicações. Viçosa: Imprensa Universitária/UFV, pp 449

  • Zanettini MHB, Lauxen MS (2003) Reprodução sexual das angiospermas. In: Freitas LB, Bered F, Genética e evolução vegetal (eds) UFRGS, Porto Alegre, pp 29–40

  • Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen–stigma adhesion in Arabidopsis: a species specific interaction mediated by lipophilic molecules in the pollen exine. Development 126:5431–5440

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank S. J. Silva Neto for plant identification; several colleagues that aided during field work; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ), and PETROBRAS for financial support. This study was part of the Doctoral dissertation of D. E. Klein (PG Biociências e Biotecnologia/UENF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Da Cunha.

Additional information

Communicated by Teh-hui Kao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, D.E., Freitas, L. & Da Cunha, M. Self-incompatibility in a distylous species of Rubiaceae: is there a single incompatibility response of the morphs?. Sex Plant Reprod 22, 121–131 (2009). https://doi.org/10.1007/s00497-009-0097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-009-0097-0

Keywords

Navigation