Skip to main content
Log in

Development and function of the synergid cell

  • Review
  • Published:
Sexual Plant Reproduction Aims and scope Submit manuscript

Abstract

The synergid cells are located in the female gametophyte and are essential for angiosperm reproduction. During the fertilization process, a pollen tube grows into one of the synergid cells, ceases growth, ruptures, and releases its two sperm cells into this cell. The synergid cells produce an attractant that guides the pollen tube to the female gametophyte and likely contain factors that control arrest of pollen tube growth, pollen tube discharge, and gamete fusion. The synergid cells contain an elaborated cell wall at their micropylar poles, the filiform apparatus that likely plays a role in pollen tube guidance and pollen tube reception. Recent genetic, molecular, and physiological studies in Arabidopsis, maize, and Torenia have provided insights into synergid cell development and the control of pollen tube growth by the synergid cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chaubal R, Reger BJ (1990) Relatively high calcium is localized in synergid cells of wheat ovaries. Sex Plant Reprod 3:98–102

    Article  Google Scholar 

  • Chaubal R, Reger BJ (1992) Calcium in the synergid cells and other regions of pearl millet ovaries. Sex Plant Reprod 5:34–46

    Article  Google Scholar 

  • Chaubal R, Reger BJ (1993) Prepollination degeneration in mature synergids of pearl millet: an examination using antimonite fixation to localize calcium. Sex Plant Reprod 6:225–238

    Article  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42

    Article  PubMed  CAS  Google Scholar 

  • Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232

    Article  PubMed  CAS  Google Scholar 

  • Christensen CA, King EJ, Jordan JR, Drews GN (1997) Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sex Plant Reprod 10:49–64

    Article  Google Scholar 

  • Cordts S, Bantin J, Wittich PE, Kranz E, Lorz H, Dresselhaus T (2001) ZmES genes encode peptides with structural homology to defensins and are specifically expressed in the female gametophyte of maize. Plant J 25:103–114

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH, Cameron RA, Ransick A (1998) Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 125:3269–3290

    PubMed  CAS  Google Scholar 

  • Diboll AG, Larson DA (1966) An electron microscopic study of the mature megagametophyte in Zea mays. Am J Bot 53:391–402

    Article  PubMed  CAS  Google Scholar 

  • Dresselhaus T, Amien S, Marton M, Strecke A, Brettschneider R, Cordts S (2005) TRANSPARENT LEAF AREA1 encodes a secreted proteolipid required for anther maturation, morphogenesis, and differentiation during leaf development in maize. Plant Cell 17:730–745

    Article  PubMed  CAS  Google Scholar 

  • Drews GN, Lee D, Christensen CA (1998) Genetic analysis of female gametophyte development and function. Plant Cell 10:5–17

    Article  PubMed  CAS  Google Scholar 

  • Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124

    Article  PubMed  CAS  Google Scholar 

  • Ephrussi A, St Johnston D (2004) Seeing is believing: the bicoid morphogen gradient matures. Cell 116:143–152

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660

    Article  PubMed  CAS  Google Scholar 

  • Faure J-E, Digonnet C, Dumas C (1994) An in vitro system for adhesion and fusion of maize gametes. Science 263:1598–1600

    Article  PubMed  Google Scholar 

  • Fisher DB, Jensen WA (1969) Cotton embryogenesis: the identification, as nuclei, of the X-bodies in the degenerated synergid. Planta 84:122–133

    Article  Google Scholar 

  • Folsom MW, Cass DD (1990) Embryo sac development in soybean: cellularization and egg apparatus expansion. Can J Bot 68:2135–2147

    Google Scholar 

  • Fu Y, Yuan M, Huang B-Q, Yang H-Y, Zee S-Y, O’Brien TP (2000) Changes in actin organization in the living egg apparatus of Torenia fournieri during fertilization. Sex Plant Reprod 12:315–322

    Article  CAS  Google Scholar 

  • Gross-Hardt R, Kagi C, Baumann N, Moore JM, Baskar R, Gagliano WB, Jurgens G, Grossniklaus U (2007) LACHESIS restricts gametic cell fate in the female gametophyte of Arabidopsis. PLoS Biol 5:e47

    Article  PubMed  CAS  Google Scholar 

  • Guilford VB, Fisk EL (1952) Megasporogenesis and seed development in Mimulus tigrinus and Torenia fournieri. Bull Torrey Bot Club 79:6–24

    Article  Google Scholar 

  • Higashiyama T (2002) The synergid cell: attractor and acceptor of the pollen tube for double fertilization. J Plant Res 115:149–160

    Article  PubMed  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (1998) Guidance in vitro of the pollen tube to the naked embryo sac of Torenia fournieri. Plant Cell 10:2019–2032

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kawano S, Kuroiwa T (2000) Explosive discharge of pollen tube contents in Torenia fournieri. Plant Physiol 122:11–14

    Article  PubMed  CAS  Google Scholar 

  • Higashiyama T, Kuroiwa H, Kuroiwa T (2003) Pollen-tube guidance: beacons from the female gametophyte. Curr Opin Plant Biol 6:36–41

    Article  PubMed  Google Scholar 

  • Higashiyama T, Yabe S, Sasaki N, Nishimura Y, Miyagishima S, Kuroiwa H, Kuroiwa T (2001) Pollen tube attraction by the synergid cell. Science 293:1480–1483

    Article  PubMed  CAS  Google Scholar 

  • Huang B-Q, Russell SD (1992) Female germ unit: organization, isolation, and function. Int Rev Cytol 140:233–292

    Google Scholar 

  • Huang BQ, Sheridan WF (1994) Female gametophyte development in maize: microtubular organization and embryo sac polarity. Plant Cell 6:845–861

    Article  PubMed  Google Scholar 

  • Huck N, Moore JM, Federer M, Grossniklaus U (2003) The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130:2149–2159

    Article  PubMed  CAS  Google Scholar 

  • Hulskamp M, Schneitz K, Pruitt RE (1995) Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7:57–64

    Article  PubMed  Google Scholar 

  • Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    Article  PubMed  CAS  Google Scholar 

  • Kasahara RD, Portereiko MF, Sandaklie-Nikolova L, Rabiger DS, Drews GN (2005) MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17:2981–2992

    Article  PubMed  CAS  Google Scholar 

  • Le Q, Gutierrez-Marcos JF, Costa LM, Meyer S, Dickinson HG, Lorz H, Kranz E, Scholten S (2005) Construction and screening of subtracted cDNA libraries from limited populations of plant cells: a comparative analysis of gene expression between maize egg cells and central cells. Plant J 44:167–178

    PubMed  CAS  Google Scholar 

  • Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari P (1950) An introduction to the embryology of angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Mansfield SG, Briarty LG, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 69:447–460

    Article  Google Scholar 

  • Marton ML, Cordts S, Broadhvest J, Dresselhaus T (2005) Micropylar pollen tube guidance by Egg Apparatus 1 of maize. Science 307:573–576

    Article  PubMed  CAS  Google Scholar 

  • Misra RC (1962) Contribution to the embryology of Arabidopsis thaliana. Agra Univ J Res 11:191–196

    Google Scholar 

  • Murgia M, Huang B-Q, Tucker SC, Musgrave ME (1993) Embryo sac lacking antipodal cells in Arabidopsis thaliana (Brassicaceae). Am J Bot 80:824–838

    Article  Google Scholar 

  • Newcomb W (1973) The development of the embryo sac of sunflower Helianthus annuus after fertilization. Can J Bot 51:879–890

    Google Scholar 

  • Punwani JA, Rabiger DS, Drews GN (2007) MYB98 positively regulates a battery of synergid-expressed genes encoding filiform apparatus localized proteins. Plant Cell 19:2557–2568

    Article  PubMed  CAS  Google Scholar 

  • Ray S, Park S-S, Ray A (1997) Pollen tube guidance by the female gametophyte. Development 124:2489–2498

    PubMed  CAS  Google Scholar 

  • Rotman N, Rozier F, Boavida L, Dumas C, Berger F, Faure JE (2003) Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Biol 13:432–436

    Article  PubMed  CAS  Google Scholar 

  • Russell SD (1979) Fine structure of megagametophyte development in Zea mays. Can J Bot 57:1093–1110

    Article  Google Scholar 

  • Russell SD (1992) Double fertilization. Int Rev Cytol 140:357–388

    Google Scholar 

  • Russell SD (1993) The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5:1349–1359

    Article  PubMed  Google Scholar 

  • Russell SD (1996) Attraction and transport of male gametes for fertilization. Sex Plant Reprod 9:337–342

    Article  Google Scholar 

  • Sandaklie-Nikolova L, Palanivelu R, King EJ, Copenhaver GP, Drews GN (2007) Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol 144:1753–1762

    Article  PubMed  CAS  Google Scholar 

  • Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507

    Article  PubMed  CAS  Google Scholar 

  • Shimizu KK, Okada K (2000) Attractive and repulsive interactions between female and male gametophytes in Arabidopsis pollen tube guidance. Development 127:4511–4518

    PubMed  CAS  Google Scholar 

  • Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, Town CD, VandenBosch KA (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51:262–280

    Article  PubMed  CAS  Google Scholar 

  • Steffen JG, Kang I-H, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51:281–292

    Article  PubMed  CAS  Google Scholar 

  • van der Pluijm JE (1964) An electron microscopic investigation of the filiform apparatus in the embryo sac of Torenia fournieri. In: Linskens HF (ed) Pollen physiology and fertilization. North-Holland Publ, Amsterdam, pp 8–16

    Google Scholar 

  • van Went JL, Willemse MTM (1984) Fertilization. In: Johri B (ed) Embryology of angiosperms. Springer, Berlin, pp 273–318

    Google Scholar 

  • Webb MC, Gunning BES (1994) Embryo sac development in Arabidopsis. II. The cytoskeleton during megagametogenesis. Sex Plant Reprod 7:153–163

    Article  Google Scholar 

  • Weterings K, Russell SD (2004) Experimental analysis of the fertilization process. Plant Cell 16(Suppl):S107–S118

    Article  PubMed  CAS  Google Scholar 

  • Willemse MTM, van Went JL (1984) The female gametophyte. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 159–196

    Google Scholar 

  • Williams EG, Knox RB, Rouse JL (1982) Pollination sub-systems distinguished by pollen tube arrest after incompatible interspecific crosses in Rhododendron (Ericaceae). J Cell Sci 53:255–277

    Google Scholar 

  • Williams EG, Kaul V, Rouse JL, Palser BF (1986) Overgrowth of pollen tubes in embryo sacs of Rhododendron following interspecific pollinations. Aust J Bot 34:413–423

    Article  Google Scholar 

  • Yadegari R, Drews GN (2004) Female gametophyte development. Plant Cell 16(Suppl):S133–S141

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Yang H-Y, Jensen W (1991) Ultrastructure of the developing embryo sac of sunflower (Helianthus annuus) before and after fertilization. Can J Bot 69:191–202

    Google Scholar 

  • Yang H, Kaur N, Kiriakopolos S, McCormick S (2006) EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. Planta 224:1004–1014

    Article  PubMed  CAS  Google Scholar 

  • Yu HJ, Hogan P, Sundaresan V (2005) Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol 139:1853–1869

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ramin Yadegari, Jaimie Van Norman, and members of the Drews lab for critical review of this manuscript. Our work on the synergid cell is supported by a National Science Foundation grant (grant no. IOB-0542953) to G.N.D. and a National Institutes of Health Developmental Biology Training Grant (grant no. 5T32 HD07491) appointment to J.A.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary N. Drews.

Additional information

Communicated by Thomas Dresselhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Punwani, J.A., Drews, G.N. Development and function of the synergid cell. Sex Plant Reprod 21, 7–15 (2008). https://doi.org/10.1007/s00497-007-0059-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00497-007-0059-3

Keywords

Navigation