VC-Dimension of Sets of Permutations


of a set of permutations to be the maximal k such that there exist distinct that appear in A in all possible linear orders, that is, every linear order of is equivalent to the standard order of for at least one permutation .

In other words, the VC-dimension of A is the maximal k such that for some the restriction of A to contains all possible linear orders. This is analogous to the VC-dimension of a set of strings.

Our main result is that there exists a universal constant C such that any set of permutations with VC-dimension 2 is of size . This is analogous to Sauer's lemma for the case of VC-dimension 2.

One corollary of our main result is that any acyclic set of linear orders of is of size , (a set A of linear orders on is called acyclic if no 3 elements appear in A in all 3 orders (i,j,k), (k,i,j) and (j,k,i)). The size of the largest acyclic set of linear orders has interested researchers for many years because it is the largest number of linear orders of n alternatives such that the following is always satisfied: if each one of a set of voters chooses one of these orders as his preference then the majority relation between each two alternatives is transitive.

This is a preview of subscription content, access via your institution.

Author information



Additional information

Received August 6, 1998

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raz, R. VC-Dimension of Sets of Permutations. Combinatorica 20, 241–255 (2000).

Download citation

  • AMS Subject Classification (1991) Classes:  05A05, 05A16, 05A20