Skip to main content
Log in

On the Generating Rank and Embedding Rank of the Hexagonic Lie Incidence Geometries

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Given a (thick) irreducible spherical building \(\Omega \), we establish a bound on the difference between the generating rank and the embedding rank of its long root geometry and the dimension of the corresponding Weyl module, by showing that this difference does not grow when taking certain residues of \(\Omega \) (in particular the residue of a vertex corresponding to a point of the long root geometry, but also other types of vertices occur). We apply this to the finite case to obtain new results on the generating rank of mainly the exceptional long root geometries, answering an open question by Cooperstein about the generating ranks of the exceptional long root subgroup geometries. We completely settle the finite case for long root geometries of type \({{\textsf{A}}}_n\), and the case of type \(\mathsf {F_{4,4}}\) over any field with characteristic distinct from 2 (which is not a long root subgroup geometry, but a hexagonic geometry).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Völklein, H.: On the geometry of the adjoint representation of a Chevalley group. J. Algebra 127, 139–154 (1989)

    Article  MathSciNet  Google Scholar 

  2. Cooperstein, B.N.: Generation of Lie incidence geometries: a survey. In: Sastry, N.S.N. (ed.) Groups of Exceptional Type, Coxeter Groups and Related Geometries. Springer Proceedings in Mathematics & Statistics, vol. 82, pp. 111–121. Springer, New Delhi (2014)

  3. Blok, R.J., Brouwer, A.E.: Spanning point-line geometries in buildings of spherical type. J. Geom. 62, 26–35 (1998)

    Article  MathSciNet  Google Scholar 

  4. Cooperstein, B.N., Shult, E.E.: Frames and bases of Lie incidence geometries. J. Geom. 60, 17–46 (1997)

    Article  MathSciNet  Google Scholar 

  5. Cooperstein, B.N.: Generating long root subgroup geometries of classical groups over prime fields. Bull. Belg. Math. Soc. Simon Stevin 5, 531–548 (1998)

    Article  MathSciNet  Google Scholar 

  6. Blok, R.J., Pasini, A.: Point-line geometries with a generating set that depends on the under- lying field. In: Finite Geometries, vol. 3, pp. 1–25. Kluwer Academic Publishers Dev. Math, Dordrecht (2001)

  7. Bourbaki, N.: Groupes et Algèbres de Lie, Chapitres 4, 5 et 6. Actu. Sci. Ind. 1337, Hermann, Paris (1968)

  8. Blok, R.J.: Highest weight modules and polarized embeddings of shadow spaces. J. Algebraic Comb. 34, 67–113 (2011)

    Article  MathSciNet  Google Scholar 

  9. Veldkamp, F.D.: Polar geometry. I–IV, V. Indag. Math. 21 (1959), 512–551, 22, 207–212 (1959)

  10. Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. Lecture Notes in Mathematics, vol. 386. Springer, Berlin (1974)

    Google Scholar 

  11. Buekenhout, F., Shult, E.E.: On the foundations of polar geometry. Geom. Dedicata 3, 155–170 (1974)

    Article  MathSciNet  Google Scholar 

  12. Kasikova, A., Shult, E.E.: Absolute embeddings of point-line geometries. J. Algebra 238, 265–291 (2001)

    Article  MathSciNet  Google Scholar 

  13. Meulewaeter, J., Van Maldeghem, H.: Convex subspaces of Lie incidence geometries. Comb. Theory 2(3), # 13, 28pp (2022)

  14. Shult, E.E.: Points and Lines, Characterizing the Classical Geometries, Universitext. Springer, Berlin, xxii+676 pp (2011)

  15. Kasikova, A., Shult, E.E.: Point-line characterizations of Lie geometries. Adv. Geom. 2, 147–188 (2002)

    Article  MathSciNet  Google Scholar 

  16. Cohen, A.M., Ivanyos, G.: Root filtration spaces from Lie algebras and abstract root groups. J. Algebra 300, 433–454 (2006)

    Article  MathSciNet  Google Scholar 

  17. Cohen, A.M., Ivanyos, G.: Root shadow spaces. Eur. J. Comb. 28(5), 1419–1441 (2007)

    Article  MathSciNet  Google Scholar 

  18. Aschbacher, M.: The 27-dimensional module for \({ E }_6\), I. Invent. Math. 89, 159–195 (1987)

    Article  MathSciNet  Google Scholar 

  19. Cooperstein, B.N.: The fifty-six-dimensional module for \(E_7\), I. A four-form for \(E_7\). J. Algebra 173, 361–389 (1995)

    Article  MathSciNet  Google Scholar 

  20. Wells, A.L., Jr.: Universal projective embeddings of the Grassmannian, half spinor, and dual orthogonal geometries. Quart. J. Math. Oxford 34, 375–386 (1983)

    Article  MathSciNet  Google Scholar 

  21. Van Maldeghem, H., Victoor, M.: Combinatorial and geometric constructions of spherical buildings. In: Lo, A. et al. Surveys in Combinatorics 2019. London Mathematical Society Lecture Note Series, vol. 456, pp. 237–265. Cambridge University Press (2019)

  22. Thas, J.A., Van Maldeghem, H.: Classification of embeddings of the flag geometries of projective planes in finite projective spaces, Part 3. J. Comb. Theory Ser. A 90, 173–196 (2000)

    Article  Google Scholar 

  23. Cardinali, I., Giuzzi, L., Pasini, A.: On the generation of some Lie type geometries. J. Comb. Theory Ser. A. 193, 105673 (2023)

    Article  MathSciNet  Google Scholar 

  24. Cohen, A.M., Cooperstein, B.: A characterization of some geometries of Lie type. Geom. Dedicata 15, 73–105 (1983)

    Article  MathSciNet  Google Scholar 

  25. Cohen, A.M.: An axiom system for metasymplectic spaces. Geom. Ded. 12, 417–433 (1982)

    Article  MathSciNet  Google Scholar 

  26. Shult, E.E.: On characterising the long-root geometries. Adv. Geom 10, 353–370 (2010)

    Article  MathSciNet  Google Scholar 

  27. Tits, J.: Sur la géométrie des \(R\)-espaces. J. Math. Pures. Appl. 36, 17–38 (1957)

    MathSciNet  Google Scholar 

  28. Cooperstein, B.N., Shult, E.E.: Geometric hyperplanes of Lie incidence geometries. Geom. Dedicata 64, 17–40 (1997)

    Article  MathSciNet  Google Scholar 

  29. De Schepper, A., Sastry, N.S.N., Van Maldeghem, H.: Buildings of exceptional type in buildings of type E7. Dissertationes Math. 573, 1–80 (2022)

    Article  MathSciNet  Google Scholar 

  30. Kasikova, A.: Simple connectedness of hyperplane complements in some geometries related to buildings. J. Comb. Theory Ser. A 118, 641–671 (2011)

    Article  MathSciNet  Google Scholar 

  31. Hall, J.I., Shult, E.E.: Locally cotriangular graphs. Geom. Ded. 18(2), 113–159 (1985)

    Article  MathSciNet  Google Scholar 

  32. Shult, E.E.: On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4, 1–18 (1997)

    Article  MathSciNet  Google Scholar 

  33. De Schepper, A., Sastry, N.S.N., Van Maldeghem, H.: Split buildings of type \({ F_4}\) in buildings of type \({ E_6}\). Abh. Math. Sem. Univ. Hamburg 88, 97–160 (2018)

    Article  Google Scholar 

  34. Cooperstein, B.N., Shult, E.E.: A note on embedding and generating dual polar spaces. Adv. Geom. 1, 37–48 (2001)

    Article  MathSciNet  Google Scholar 

  35. Schillewaert, J., Van Maldeghem, H.: Quadric Veronesean caps. Bull. Belgian Math. Soc. Simon Stevin 20, 19–25 (2013)

    Article  MathSciNet  Google Scholar 

  36. Cooperstein, B.N.: On the generation of dual polar spaces of symplectic type over finite fields. J. Comb. Theory Ser. A 83, 221–232 (1998)

    Article  MathSciNet  Google Scholar 

  37. De Bruyn, B., Pasini, A.: Generating symplectic and Hermitian dual polar spaces over arbitrary fields nonisomorphic to \({F}_2\), Electron. J. Comb. 214 (2007), Reseach Paper # 54, 17pp

Download references

Acknowledgements

We are grateful to Arjeh Cohen for helping to clarify the state of the art, to Antonio Pasini for many helpful remarks on an earlier version of the manuscript, and to You Qi for a discussion on adjoint representations and the Weyl module. Also, part of this research was done while the first author was a Leibniz Fellow at the Mathematisches Forschungsinstitut Oberwolfach in 2021, gratefully enjoying the facilities and stimulating environment of the institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schillewaert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by the Fund for Scientific Research Flanders—FWO Vlaanderen 12ZJ220N

The second author is supported by the New Zealand Marsden fund grant MFP-UOA2122.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Schepper, A., Schillewaert, J. & Van Maldeghem, H. On the Generating Rank and Embedding Rank of the Hexagonic Lie Incidence Geometries. Combinatorica 44, 355–392 (2024). https://doi.org/10.1007/s00493-023-00075-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00075-y

Keywords

Mathematics Subject Classification

Navigation